Efficient quadrature rules for numerical evaluation of singular and hyper singular integrals

Authors

  • Shafiq Ahmad Department of Mathematics, Islamia College University, Peshawar, Pakistan https://orcid.org/0000-0002-7271-0082
  • Siraj ul Islam University of Engineering and Technology, Peshawar, Pakistan

DOI:

https://doi.org/10.33959/cuijca.v6i1.65

Keywords:

Hybrid functions, Hadamard finite part integrals, Cauchy principle value integrals, Haar wavelets.

Abstract

In this paper Newton-Cote type quadrature rule, Haar wavelets, and hybrid functions-based quadratures are used for the numerical solution of singular and hyper singular integrals having singularity at the origin. These integrals include the Cauchy principle value (CPV) and Hadamard finite part (HFP) integrals. The proposed rules are tested numerically on some test problems to check the efficiency and accuracy of the new methods.

References

I. Aziz, Sira-ul-Islam, and W. Khan. Quadrature rules for numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Applic., 61:2770-2781, 2011.

G. Criscuolo. A new algorithm for Cauchy principal value and Hadamard finite-part integrals. J. Comput. Appl. Math., 78:255-275, 1997.

E.Venturino. On the numerical calculation of Hadamardfinite part integrals. Le.Math., 3:277-292, 1998.

NI Ioakimidis. Application of finite part integrals to the singular integral equations of crack problems in plane and three-dimensional elasticity. Acta Mechanica, 45(1-2):31-47, 1982.

X. Wang J. Li and T. Wang. Evaluation of Cauchy principal value integrals of oscillatory kind. Appl. Math. Comput., 217:2390-2396, 2010.

X. Wang J. Li and T. Wang. Evaluation of Cauchy principal value integrals of oscillatory kind. Appl. Math. Comput., 217:2390-2396, 2010.

A.Cemalettin Kaya and Fazil Erdogan. On the solution of integral equations with strongly singular kernels. Quar.Appl.Math., pages 105-122, 1987.

C. Macaskill and E.O Tuck. Evaluation of the acoustic impedance of a screen. J.Aust.Math.Soc. Series B. App.Math., 20(01):46-61, 1977.

P. K. Mohanty. Quadrature rules for evaluation of hyper singular integrals. Appl. Math. Sci., 8:5839-5845, 2014.

G. Criscuolo M.R. Capobianco. On quadrature for cauchy principal value integrals of oscillatory functions. Comput. Appl. Math, 156:471-486, 2003.

G.E. Okecha. Quadrature formulae for cauchy principal value integrals of oscillatory kind. Math. Comput., 49(259-268), 1987.

P.Keller. Roundo errors in the problem of computing cauchy principal value integrals. Maths.NA, 2011.

A.G. Ramm and A. Van der Sluis. Calculating singular integrals as an ill-posed problem, volume 57. 1990.

Siraj-ul-Islam, A. S. Al-Fhaid, and S. Zaman. Meshless and wavelets based complex quadra-ture of highly oscillatory integrals and the integrals with stationary points. Engg. Analy. Bound. Elemt., 37:1136-1144, 2013.

Siraj-ul-Islam, I. Aziz, and Fazal-e-Haq. A comparative study of numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Applic., 59(6):2026-2036, 2010.

Siraj-ul-Islam, I. Aziz, and W. Khan. Numerical integration of multi-dimensional highly oscillatory, gentle oscillatory and non-oscillatory integrands based on wavelets and radial basis functions. Engg. Analy. Bound. Elemt., 36:1284-1295, 2012.

Siraj-ul-Islam, I. Aziz, and B. Sarler. The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets. Math. Computr. Mod., 50:1577-1590, 2010.

Siraj-ul-Islam, B. Sarler, I. Aziz, and F. Haq. The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets. Inter. J. Ther-mal Sc., 52:686-697, 2011.

Siraj-ul-Islam and S. Zaman. New quadrature rules for highly oscillatory integrals with stationary points. J. Comput. Appl. Math., 278:75-89, 2015.

H. Wang and S. Xiang. Uniform approximations to Cauchy principal value integrals of oscillatory functions. Appl. Math. Comput., 215:1886-1894, 2009.

H. Wang and S. Xiang. Uniform approximations to Cauchy principal value integrals of oscillatory functions. Appl. Math. Comput., 215:1886-1894, 2009.

H. Wang and S. Xiang. Uniform approximations to Cauchy principal value integrals of oscillatory functions. Appl. Math. Comput., 215(5):1886-1894, 2009.

S. Xiang, C. Fang, and Z. Xu. On uniform approximations to hypersingular nite-part integrals.J.Mathe.Anal.andAppl.,435(2):1210-1228,2016.

Downloads

Published

2023-12-12

How to Cite

Ahmad, S., & Islam, S. ul. (2023). Efficient quadrature rules for numerical evaluation of singular and hyper singular integrals. City University International Journal of Computational Analysis, 6(1), 22–29. https://doi.org/10.33959/cuijca.v6i1.65

Issue

Section

Articles