Improved Performance of Silicon-Germanium Solar Cell Based on Optimization of Layer Thickness

Authors

  • Nadir Shah School of Energy and Power Engineering, Chongqing University, Chongqing, China
  • Ahsan Zafar School of Electrical and Information Engineering, Tianjin University, Tianjin, China https://orcid.org/0000-0002-2981-9779

DOI:

https://doi.org/10.33959/cuijca.v5i1.53

Abstract

Electrical energy has become an essential part of our life. Therefore, its supply must be sustainable, economical, and environment-friendly. The conversion of sunlight into electricity is made possible through the solar cell, a semiconductor device, however, the conversion efficiency of these cells is low which can be further improved. This research work presents the design and performance analysis of silicon-germanium (Si-Ge) solar cells. Amorphous silicon / crystalline silicon Heterojunction (a-Si/c-Si HIT) solar, Ge, Si-Ge alloy with 25% Si concentration solar cells are designed in Afors-Het software. An improved conversion efficiency (?) of 25.23%, 5.125%, and 11.53%, respectively is achieved.

References

De Wolf, S., Descoeudres, A., Holman, Z.C. and Ballif, C., 2012. High-efficiency silicon heterojunction solar cells: A review. green, 2(1), pp.7-24. DOI: https://doi.org/10.1515/green-2011-0018

Fasoli, A. and Milne, W.I., 2012. Overview and status of bottom-up silicon nanowire electronics. Materials science in semiconductor processing, 15(6), pp.601-614. DOI: https://doi.org/10.1016/j.mssp.2012.05.010

Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., ... & Kuwano, Y. (1992). Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Japanese Journal of Applied Physics, 31(11R), 3518. DOI: https://doi.org/10.1143/JJAP.31.3518

Keevers, M.J., 2001. Photovoltaics literature survey (no. 6). Progress in Photovoltaics: Research and Applications, 9(1), pp.69-71. DOI: https://doi.org/10.1002/pip.363

Choi, W.K., 2001. Optical, structural, and electrical properties of amorphous silicon carbide films. In Silicon-Based Material and Devices (pp. 1-71). Academic Press. DOI: https://doi.org/10.1016/B978-012513909-0/50003-9

Bivour, M., Reusch, M., Schr?¶er, S., Feldmann, F., Temmler, J., Steinkemper, H. and Hermle, M., 2014. Doped layer optimization for silicon heterojunctions by injection-level-dependent open-circuit voltage measurements. IEEE Journal of Photovoltaics, 4(2), pp.566-574. DOI: https://doi.org/10.1109/JPHOTOV.2013.2294757

Asadpour, R., Chavali, R.V., Ryyan Khan, M. and Alam, M.A., 2015. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (?· T*?€? 33%) solar cell. Applied Physics Letters, 106(24), p.243902. DOI: https://doi.org/10.1063/1.4922375

Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K. and Maruyama, E., 2013. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE Journal of photovoltaics, 4(1), pp.96-99. DOI: https://doi.org/10.1109/JPHOTOV.2013.2282737

Ballif, C., De Wolf, S., Descoeudres, A. and Holman, Z.C., 2014. Amorphous silicon/crystalline silicon heterojunction solar cells. In Semiconductors and Semimetals (Vol. 90, pp. 73-120). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-388417-6.00003-9

Healy, S.A. and Green, M.A., 1992. Efficiency enhancements in crystalline silicon solar cells by alloying with germanium. Solar energy materials and solar cells, 28(3), pp.273-284. DOI: https://doi.org/10.1016/0927-0248(92)90035-N

Ruiz, J.M., Casado, J. and Luque, A., 1994. Assessment of crystalline Si1-xGex infrared solar cells for dual bandgap PV concept. 72th PVSEC, pp.572-574.

Borne, E., Boyeaux, J.P. and Laugier, A., 1994, December. Efficiency improvements of silicon solar cells by absorption enhancement with germanium. In Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC) (Vol. 2, pp. 1637-1639). IEEE. DOI: https://doi.org/10.1109/WCPEC.1994.520531

Losada, B.R., Moehlecke, A., Ruiz, J.M. and Luque, A., 1995. Development of solar cells on monocrystalline alloys of Si 1-x Ge x. 13th Eur. PVSEC, pp.925-928.

Christoffel, E., Debarge, L. and Slaoui, A., 1997, January. Modeling of multilayer SiGe based thin film solar cells. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997 (pp. 783-786). IEEE. DOI: https://doi.org/10.1109/PVSC.1997.654206

Zulkefle, A.A., Zainon, M., Zakaria, Z., Shahahmadi, S.A., Bhuiyan, M.A.M., Alam, M.M., Sopian, K. and Amin, N., 2013, June. Effects of germanium layer on silicon/germanium superlattice solar cells. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (pp. 3484-3486). IEEE. DOI: https://doi.org/10.1109/PVSC.2013.6744243

Kibbel, H., Koenig, U., Konle, J., & Presting, H. (2003). U.S. Patent No. 6,670,544. Washington, DC: U.S. Patent and Trademark Office.

Lochtefeld, A., & Barnett, A. (2011). U.S. Patent Application No. 12/911,678.

Posthuma, N.E., Van Der Heide, J., Flamand, G. and Poortmans, J., 2007. Emitter formation and contact realization by diffusion for germanium photovoltaic devices. IEEE Transactions on Electron Devices, 54(5), pp.1210-1215. DOI: https://doi.org/10.1109/TED.2007.894610

van der Heide, J., Posthuma, N.E., Flamand, G., Geens, W. and Poortmans, J., 2009. Cost-efficient thermophotovoltaic cells based on germanium substrates. Solar Energy Materials and Solar Cells, 93(10), pp.1810-1816. DOI: https://doi.org/10.1016/j.solmat.2009.06.017

Xu, W., Cheng, Z. and Xu, X., 2018. The model of performance change of GaInP/GaAs/Ge triple-junction solar cells in pico-satellite. Solar Energy, 169, pp.105-110. DOI: https://doi.org/10.1016/j.solener.2018.02.043

Wu, R., Wang, J.L., Yan, G. and Wang, R., 2018. Photoluminescence analysis of electron damage for minority carrier diffusion length in GaInP/GaAs/Ge triple-junction solar cells. Chinese Physics Letters, 35(4), p.046101.

Baran, V., Cat, Y., Sertel, T., Ataser, T., Sonmez, N.A., Cakmak, M. and Ozcelik, S., 2020. A comprehensive study on a stand-alone germanium (Ge) solar cell. Journal of Electronic Materials, 49(2), pp.1249-1256. DOI: https://doi.org/10.1007/s11664-019-07712-7

Wu, R., Wang, J.L., Yan, G. and Wang, R., 2018. Photoluminescence analysis of electron damage for minority carrier diffusion length in GaInP/GaAs/Ge triple-junction solar cells. Chinese Physics Letters, 35(4), p.046101. DOI: https://doi.org/10.1088/0256-307X/35/4/046101

Fitzgerald, E.A., Xie, Y.H., Monroe, D., Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiel, F.A. and Weir, B.E., 1992. Relaxed Ge x Si1?€’ x structures for III??“V integration with Si and high mobility two???dimensional electron gases in Si. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 10(4), pp.1807-1819. DOI: https://doi.org/10.1116/1.586204

Mooney, P.M., Jordan???Sweet, J.L., Chu, J.O. and LeGoues, F.K., 1995. Evolution of strain relaxation in step???graded SiGe/Si structures. Applied physics letters, 66(26), pp.3642-3644. DOI: https://doi.org/10.1063/1.114126

Schmid, U., Luke, F., Christensen, N.E., Alouani, M., Cardona, M., Kasper, E., Kibbel, H. and Presting, H., 1990. Interband transitions in strain-symmetrized Ge 4 Si 6 superlattices. Physical review letters, 65(15), p.1933. DOI: https://doi.org/10.1103/PhysRevLett.65.1933

Carney, D.J., 2019. Design and Fabrication of Germanium-Based Guided-Mode Resonance Infrared Reflectors and Gold-Based Nanocavity Plasmonic Arrays (Doctoral dissertation).

Zulkefle, A.A., Zainon, M., Zakaria, Z., Mat Hanafiah, M.A., Razak, N.H.A., Shahahmadi, S.A., Akhtaruzzaman, M., Sopian, K. and Amin, N., 2015. A comparative study between silicon germanium and germanium solar cells by numerical simulation. In Applied Mechanics and Materials (Vol. 761, pp. 341-346). Trans Tech Publications Ltd.

Pham, D.P., Lee, S., Le, A.H.T., Cho, E.C., Cho, Y.H. and Yi, J., 2020. Monocrystalline silicon-based tandem configuration for solar-to-hydrogen conversion. Inorganic Chemistry Communications, p.107926. DOI: https://doi.org/10.1016/j.inoche.2020.107926

Pham, D.P., Kim, S., Park, J., Le, A.H.T., Cho, J. and Yi, J., 2017. Improvement in carrier collection at the i/n interface of graded narrow-gap hydrogenated amorphous silicon germanium solar cells. Journal of Alloys and Compounds, 724, pp.400-405. DOI: https://doi.org/10.1016/j.jallcom.2017.05.026

Zulkefle, A.A., Zainon, M., Zakaria, Z., Mat Hanafiah, M.A., Razak, N.H.A., Shahahmadi, S.A., Akhtaruzzaman, M., Sopian, K. and Amin, N., 2015. A comparative study between silicon germanium and germanium solar cells by numerical simulation. In Applied Mechanics and Materials (Vol. 761, pp. 341-346). Trans Tech Publications Lt DOI: https://doi.org/10.4028/www.scientific.net/AMM.761.341

Downloads

Published

2022-12-07

How to Cite

Shah, N., & Zafar, A. (2022). Improved Performance of Silicon-Germanium Solar Cell Based on Optimization of Layer Thickness. City University International Journal of Computational Analysis, 5(1), 1–10. https://doi.org/10.33959/cuijca.v5i1.53

Issue

Section

Articles