Improved Performance of Silicon-Germanium Solar Cell Based on Optimization of Layer Thickness
DOI:
https://doi.org/10.33959/cuijca.v5i1.53Abstract
Electrical energy has become an essential part of our life. Therefore, its supply must be sustainable, economical, and environment-friendly. The conversion of sunlight into electricity is made possible through the solar cell, a semiconductor device, however, the conversion efficiency of these cells is low which can be further improved. This research work presents the design and performance analysis of silicon-germanium (Si-Ge) solar cells. Amorphous silicon / crystalline silicon Heterojunction (a-Si/c-Si HIT) solar, Ge, Si-Ge alloy with 25% Si concentration solar cells are designed in Afors-Het software. An improved conversion efficiency (?) of 25.23%, 5.125%, and 11.53%, respectively is achieved.References
De Wolf, S., Descoeudres, A., Holman, Z.C. and Ballif, C., 2012. High-efficiency silicon heterojunction solar cells: A review. green, 2(1), pp.7-24.
Fasoli, A. and Milne, W.I., 2012. Overview and status of bottom-up silicon nanowire electronics. Materials science in semiconductor processing, 15(6), pp.601-614.
Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., ... & Kuwano, Y. (1992). Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Japanese Journal of Applied Physics, 31(11R), 3518.
Keevers, M.J., 2001. Photovoltaics literature survey (no. 6). Progress in Photovoltaics: Research and Applications, 9(1), pp.69-71.
Choi, W.K., 2001. Optical, structural, and electrical properties of amorphous silicon carbide films. In Silicon-Based Material and Devices (pp. 1-71). Academic Press.
Bivour, M., Reusch, M., Schr?¶er, S., Feldmann, F., Temmler, J., Steinkemper, H. and Hermle, M., 2014. Doped layer optimization for silicon heterojunctions by injection-level-dependent open-circuit voltage measurements. IEEE Journal of Photovoltaics, 4(2), pp.566-574.
Asadpour, R., Chavali, R.V., Ryyan Khan, M. and Alam, M.A., 2015. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (?· T*?€? 33%) solar cell. Applied Physics Letters, 106(24), p.243902.
Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K. and Maruyama, E., 2013. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE Journal of photovoltaics, 4(1), pp.96-99.
Ballif, C., De Wolf, S., Descoeudres, A. and Holman, Z.C., 2014. Amorphous silicon/crystalline silicon heterojunction solar cells. In Semiconductors and Semimetals (Vol. 90, pp. 73-120). Elsevier.
Healy, S.A. and Green, M.A., 1992. Efficiency enhancements in crystalline silicon solar cells by alloying with germanium. Solar energy materials and solar cells, 28(3), pp.273-284.
Ruiz, J.M., Casado, J. and Luque, A., 1994. Assessment of crystalline Si1-xGex infrared solar cells for dual bandgap PV concept. 72th PVSEC, pp.572-574.
Borne, E., Boyeaux, J.P. and Laugier, A., 1994, December. Efficiency improvements of silicon solar cells by absorption enhancement with germanium. In Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC) (Vol. 2, pp. 1637-1639). IEEE.
Losada, B.R., Moehlecke, A., Ruiz, J.M. and Luque, A., 1995. Development of solar cells on monocrystalline alloys of Si 1-x Ge x. 13th Eur. PVSEC, pp.925-928.
Christoffel, E., Debarge, L. and Slaoui, A., 1997, January. Modeling of multilayer SiGe based thin film solar cells. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997 (pp. 783-786). IEEE.
Zulkefle, A.A., Zainon, M., Zakaria, Z., Shahahmadi, S.A., Bhuiyan, M.A.M., Alam, M.M., Sopian, K. and Amin, N., 2013, June. Effects of germanium layer on silicon/germanium superlattice solar cells. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (pp. 3484-3486). IEEE.
Kibbel, H., Koenig, U., Konle, J., & Presting, H. (2003). U.S. Patent No. 6,670,544. Washington, DC: U.S. Patent and Trademark Office.
Lochtefeld, A., & Barnett, A. (2011). U.S. Patent Application No. 12/911,678.
Posthuma, N.E., Van Der Heide, J., Flamand, G. and Poortmans, J., 2007. Emitter formation and contact realization by diffusion for germanium photovoltaic devices. IEEE Transactions on Electron Devices, 54(5), pp.1210-1215.
van der Heide, J., Posthuma, N.E., Flamand, G., Geens, W. and Poortmans, J., 2009. Cost-efficient thermophotovoltaic cells based on germanium substrates. Solar Energy Materials and Solar Cells, 93(10), pp.1810-1816.
Xu, W., Cheng, Z. and Xu, X., 2018. The model of performance change of GaInP/GaAs/Ge triple-junction solar cells in pico-satellite. Solar Energy, 169, pp.105-110.
Wu, R., Wang, J.L., Yan, G. and Wang, R., 2018. Photoluminescence analysis of electron damage for minority carrier diffusion length in GaInP/GaAs/Ge triple-junction solar cells. Chinese Physics Letters, 35(4), p.046101.
Baran, V., Cat, Y., Sertel, T., Ataser, T., Sonmez, N.A., Cakmak, M. and Ozcelik, S., 2020. A comprehensive study on a stand-alone germanium (Ge) solar cell. Journal of Electronic Materials, 49(2), pp.1249-1256.
Wu, R., Wang, J.L., Yan, G. and Wang, R., 2018. Photoluminescence analysis of electron damage for minority carrier diffusion length in GaInP/GaAs/Ge triple-junction solar cells. Chinese Physics Letters, 35(4), p.046101.
Fitzgerald, E.A., Xie, Y.H., Monroe, D., Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiel, F.A. and Weir, B.E., 1992. Relaxed Ge x Si1?€’ x structures for III??“V integration with Si and high mobility two???dimensional electron gases in Si. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 10(4), pp.1807-1819.
Mooney, P.M., Jordan???Sweet, J.L., Chu, J.O. and LeGoues, F.K., 1995. Evolution of strain relaxation in step???graded SiGe/Si structures. Applied physics letters, 66(26), pp.3642-3644.
Schmid, U., Luke, F., Christensen, N.E., Alouani, M., Cardona, M., Kasper, E., Kibbel, H. and Presting, H., 1990. Interband transitions in strain-symmetrized Ge 4 Si 6 superlattices. Physical review letters, 65(15), p.1933.
Carney, D.J., 2019. Design and Fabrication of Germanium-Based Guided-Mode Resonance Infrared Reflectors and Gold-Based Nanocavity Plasmonic Arrays (Doctoral dissertation).
Zulkefle, A.A., Zainon, M., Zakaria, Z., Mat Hanafiah, M.A., Razak, N.H.A., Shahahmadi, S.A., Akhtaruzzaman, M., Sopian, K. and Amin, N., 2015. A comparative study between silicon germanium and germanium solar cells by numerical simulation. In Applied Mechanics and Materials (Vol. 761, pp. 341-346). Trans Tech Publications Ltd.
Pham, D.P., Lee, S., Le, A.H.T., Cho, E.C., Cho, Y.H. and Yi, J., 2020. Monocrystalline silicon-based tandem configuration for solar-to-hydrogen conversion. Inorganic Chemistry Communications, p.107926.
Pham, D.P., Kim, S., Park, J., Le, A.H.T., Cho, J. and Yi, J., 2017. Improvement in carrier collection at the i/n interface of graded narrow-gap hydrogenated amorphous silicon germanium solar cells. Journal of Alloys and Compounds, 724, pp.400-405.
Zulkefle, A.A., Zainon, M., Zakaria, Z., Mat Hanafiah, M.A., Razak, N.H.A., Shahahmadi, S.A., Akhtaruzzaman, M., Sopian, K. and Amin, N., 2015. A comparative study between silicon germanium and germanium solar cells by numerical simulation. In Applied Mechanics and Materials (Vol. 761, pp. 341-346). Trans Tech Publications Lt
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nadir Shah, Ahsan Zafar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
You are free to:
Share - copy and redistribute the material in any medium or format
Adapt - remix, transform, and build upon the material
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Non Commercial - You may not use the material for commercial purposes.
No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.