Caputo-Fabrizio Fractional Model of Electro-Osmotic Flow of Walters??™-B Fluid in the Presence of Diffusion-Thermo: Exact Solution via Integral Transform

Authors

  • Saqib Murtaza Department of Mathematics, City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan.
  • Muhammad Iftikhar Department of Mathematics, City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan.
  • Zubair Ahmad Department of Mathematics, City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan.
  • Ibn e Ali Higher Education Archives & Libraries Department KP, Govt. Superior Science College, Peshawar, Pakistan
  • Ilyas Khan Department of Mathematics, College of Science Al-Zulfi, Majmah University, Al-Majmah, 11952, Saudi Arabia.

DOI:

https://doi.org/10.33959/cuijca.v4i2.44

Abstract

Electrically conducted viscoelastic fluids have recently caught the attention of scientists and engineers due to their extensive applications in various sectors of research and engineering. They're utilized in cancer therapy (hyperthermia), MRI, medication administration, and magnetic refrigeration, to name a few applications (MR). The core objective of the present analysis is to develop the exact solution of the fractional convective flow of Walters B liquid. The effects of thermal radiations, magnetic field, electro-osmosis, and diffusion thermo have been considered in the present phenomenon. With the help of relative constitutive equations, the governing equations of the present phenomenon have been modeled in terms of second-order partial differential equations. To established the closed-form solution for velocity, temperature, and concentration equation, the Caputo-Fabrizio, and the Laplace transform technique have been implemented. To check the influences of various inserted parameters on fluid, graphs have been plotted. It is very important to mention that electro-osmotic and Walters??™-B fluid parameters decline the profile of velocity.? 

References

F. F. Reuss, Sur un nouvel effet de llectricit galvanique, Nouveaux de la Socit imperial des naturlistes de Moscou, 2, (1809) 327-337.

Asadi, A., Huat, B. B., Nahazanan, H., & Keykhah, H. A. Theory of electroosmosis in soil. International Journal of Electrochemical Science, 8(1) (2013), 1016-1025. DOI: https://doi.org/10.1016/S1452-3981(23)14076-4

Gray, D. H. (1970). Electrochemical hardening of clay soils. Geotechnique, 20(1) (1970), 81-93. DOI: https://doi.org/10.1680/geot.1970.20.1.81

D.H., Gray, and H.K., Mitchell, Journal of the Soil Mechanics and Foundations, ASCE 93 (1967) 209-236. DOI: https://doi.org/10.1061/JSFEAQ.0001053

Das, S., & Chakraborty, S. Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flow of a non-Newtonian bio-fluid. Analytica Chimica Acta, 559(1) (2006), 15-24. DOI: https://doi.org/10.1016/j.aca.2005.11.046

Zhao, C., Zholkovskij, E., Masliyah, J. H., & Yang, C. Analysis of electroosmotic flow of power-law fluids in a slit microchannel. Journal of colloid and interface science, 326(2) (2008), 503-510. DOI: https://doi.org/10.1016/j.jcis.2008.06.028

Tang, G. H., Li, X. F., He, Y. L., & Tao, W. Q. Electroosmotic flow of non-Newtonian fluid in microchannels. Journal of Non-Newtonian Fluid Mechanics, 157(1-2) (2009), 133-137. DOI: https://doi.org/10.1016/j.jnnfm.2008.11.002

Zhao, C., & Yang, C. Joule heating induced heat transfer for the electroosmotic flow of power-law fluids in a microcapillary. International Journal of Heat and Mass Transfer, 55(7-8) (2012), 2044-2051. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.005

Liu, Q. S., Jian, Y. J., & Yang, L. G. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates.

Journal of Non-Newtonian Fluid Mechanics, 166(9-10) (2011), 478-486. DOI: https://doi.org/10.1016/j.jnnfm.2011.02.003

Liu, Q., Jian, Y., & Yang, L. The alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel. Physics of Fluids, 23(10) (2011), 102001. DOI: https://doi.org/10.1063/1.3640082

Ali, F., Iftikhar, M., Khan, I., Sheikh, N. A., & Nisar, K. S. (2020). Time fractional analysis of electro-osmotic flow of Walters??™ sB fluid with time-dependent temperature and concentration. Alexandria Engineering Journal, 59(1), 25-38. DOI: https://doi.org/10.1016/j.aej.2019.11.020

Murtaza, S., Iftekhar, M., Ali, F., & Khan, I. (2020). Exact Analysis of Non-Linear Electro-Osmotic Flow of Generalized Maxwell Nanofluid: Applications in Concrete Based Nano-Materials. IEEE Access, 8, 96738-96747. DOI: https://doi.org/10.1109/ACCESS.2020.2988259

Machado, J. T., Galhano, A. M., & Trujillo, J. J. (2013). Science metrics on fractional calculus development since 1966. Fractional Calculus and Applied Analysis, 16(2), 479-500. DOI: https://doi.org/10.2478/s13540-013-0030-y

Oldham, K., & Spanier, J. (1974). The fractional calculus theory and applications of differentiation and integration to arbitrary order (Vol. 111). Elsevier.

Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations.

Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives: theory and applications.

Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Vol. 198). Elsevier.

Caputo, M., & Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl, 1(2) (2015), 1-13. DOI: https://doi.org/10.18576/pfda/020101

Zafar, A. A., & Fetecau, C. Flow over an infinite plate of a viscous fluid with a non-integer order derivative without singular kernel. Alexandria Engineering Journal, 55(3) (2016), 2789-2796. DOI: https://doi.org/10.1016/j.aej.2016.07.022

Gambo, Y. Y., Jarad, F., Baleanu, D., & Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Advances in Difference Equations, 2014(1) (2014), 10. DOI: https://doi.org/10.1186/1687-1847-2014-10

Ali, F., Saqib, M., Khan, I., & Sheikh, N. A. Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters??™-B fluid model. The European Physical Journal Plus, 131(10) (2016), 377.

Abdeljawad, T., & Baleanu, D. On fractional derivatives with exponential kernel and their discrete versions. Reports on Mathematical Physics, 80(1) (2017), 11-27. DOI: https://doi.org/10.1016/S0034-4877(17)30059-9

Sheikh, N. A., Ali, F., Khan, I., & Saqib, M. (2016). A modern approach of Caputo??“Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium. Neural Computing and Applications, 1-11.

Ali, F., Ali, F., Sheikh, N. A., Khan, I., & Nisar, K. S. (2020). Caputo??“Fabrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology. Chaos, Solitons & Fractals, 131, 109489. DOI: https://doi.org/10.1016/j.chaos.2019.109489

Ali, F., Khan, I., Sheikh, N. A., Gohar, M., & Tlili, I. (2018). Effects of different shaped nanoparticles on the performance of engine-oil and kerosene-oil: a generalized Brinkman-type fluid model with non-singular kernel. Scientific reports, 8(1), 1-13. DOI: https://doi.org/10.1038/s41598-018-33547-z

Ali, F., Murtaza, S., Sheikh, N. A., & Khan, I. (2019). Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana??“Balaenu and Caputo??“Fabrizio fractional models. Chaos, Solitons & Fractals, 129, 1-15. DOI: https://doi.org/10.1016/j.chaos.2019.08.013

Saqib, M., Ali, F., Khan, I., Sheikh, N. A., & Jan, S. A. A. (2018). Exact solutions for free convection flow of generalized Jeffrey fluid: a Caputo-Fabrizio fractional model. Alexandria engineering journal, 57(3), 1849-1858. DOI: https://doi.org/10.1016/j.aej.2017.03.017

Ali, F., Saqib, M., Khan, I., & Sheikh, N. A. (2016). Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters??™-B fluid model. The European Physical Journal Plus, 131(10), 377. DOI: https://doi.org/10.1140/epjp/i2016-16377-x

Sheikh, N. A., Ali, F., Khan, I., & Saqib, M. (2018). A modern approach of Caputo??“Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium. Neural Computing and Applications, 30(6), 1865-1875. DOI: https://doi.org/10.1007/s00521-016-2815-5

Turkyilmazoglu, M., & Pop, I. (2013). Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. International Journal of Heat and Mass Transfer, 59, 167-171. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.009

Published

2022-02-21

How to Cite

Murtaza, S., Iftikhar, M., Ahmad, Z., Ali, I. e, & Khan, I. (2022). Caputo-Fabrizio Fractional Model of Electro-Osmotic Flow of Walters??™-B Fluid in the Presence of Diffusion-Thermo: Exact Solution via Integral Transform. City University International Journal of Computational Analysis, 4(2), 19–30. https://doi.org/10.33959/cuijca.v4i2.44

Issue

Section

Articles

Most read articles by the same author(s)