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A B S T R A C T 

The new coronavirus illness 2019 (COVID-19) poses a major danger to 

civilization today. Despite its simplicity, the susceptible-infected-

recovered/removed (SIR) model and its variations are frequently used to predict 

the spread of COVID 19 across the world. However, using the SIR model to 

obtain exact solutions is difficult, especially in the early stages of a pandemic 

when data is few and sometimes noisy. The goal of this study is to describe 

COVID-19 dynamics in Turkey. The classical model is fractionalized via 

Atangana-Baleanu fractional derivative. From the 30th of October to the 8th of 

November 2020, we examine the available infection cases and fit or estimate 

various parameters appropriately. The basic reproduction number has been 

obtained as 0 1.09457  . To analyse the model's dynamics and transmission, 

stability analysis is performed at disease free equilibrium DFE and endemic 

equilibrium EE. Finally, the numerical results of AB fractional model are 

obtained and the influence of different parameters like fractional parameter , 

contact rate   , and recovery rate   on the model are shown by plotting graphs. 

We have forecasted the disease's spread for the next 800 days. 

1 Introduction  
Three zoonotic coronaviruses–Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome 

(MERS), and Swine Acute Diarrhoea Syndrome (SADS)–have been linked to large-scale illness outbreaks in the 

last two decades. COVID-19, a fatal viral illness that initially appeared in Wuhan, Hubei Province, China, in 

December 2019, has already spread to over 200 countries throughout the world, generating a global emergency. 

COVID-19 stands for Coronavirus 2 of the Severe Acute Respiratory Syndrome (SARS-CoV-2) [1]. The World 

Health Organization (WHO) has designated it a worldwide public health emergency [2]. This disease is mostly 

spread from person to person by direct contact with respiratory droplets, as well as indirectly through fomites in the 

affected individual's immediate environment [3,4]. Fever, tiredness, dry cough, and myalgia are the most frequent 
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symptoms of COVID-19, however some patients also have headaches, stomach pains, diarrhoea, nausea, and 

vomiting. Clinical findings reveal that, depending on the immune system, the patient gets morbid within 1-2 days 

of acute sickness, becomes morbid after 4-6 days, and the infection clears in 18 days [5]. It is reported that the 

COVID-19’s fatality rate is near about 3.4% [6]. There are already quite a few different models of COVID-19 

developed and published that have analysed various aspects of disease dynamics and possible containment. 

The objective of using mathematical models to investigate infectious diseases is to gain a better understanding of 

how they spread in a community and to identify some potential solutions for controlling their spread. As a result, in 

many nations and among other health authorities, mathematical modelling techniques provide strong tools for 

epidemiological policy decision-making. These models are sometimes the only feasible method for determining 

which preventative or control method is the most successful. Despite its simplicity, the SIR model and its variations 

are frequently utilized to forecast the progression of COVID-19 across the world. However, estimating the SIR 

model with accuracy is difficult, especially in the early phases of a pandemic with limited and sometimes noisy data 

[7-10]. 

Fractional order modelling is the generalization of classical models that can explain the dynamical systems more 

precisely. In the literature, many researchers reported their investigations in different research areas by using other 

fractional operators such as geotechnical engineering, nanotechnology, heat transfer phenomena, blood flow, cancer 

therapy, drug delivery, and biochemical reactions [11-14]. Besides this, a lot of research is reported to study the 

spread of different infections. The transmission of COVID-19 has recently been studied by a number of researchers 

employing various fractional operators [15]-[17]. Rajagopal et al. [15] used the fractional SEIRD model to 

investigate the propagation of COVID-19 and found that the fractional order model gives the best crossover 

behaviour which is more realistic as compared to the classical one. Alkahtani and Alzaid [16] discussed the dynamics 

of novel coronavirus in Italy. They modelled their problem in terms of non-linear ODE’s and fractionalized them 

by using different operators. Yadav and Verma [17] reported their investigations based on the COVID-19’s spread 

by using CF fractional derivative. 

Using the SIR model, we focused at the dynamics of COVID-19 in this work. Initially, we modelled the dynamical 

system in terms of a system of non-linear ODE’s. Furthermore, we fractionalized our integer order model by using 

the AB-fractional operator. The AB time-fractional derivative was chosen due to non locality and non-sigularity in 

its kernel that allows it to forecast COVID-19 spread more precisely. Most researchers has chosen the AB fractional 

model for investigating the forecast of a variety of illness, concluding that the AB fractional derivative yields more 

accurate results than other fractional operators [18-19]. Qureshi and Yusuf [18] presented an MSEIR model to 

analyse the transmission of Chickenpox illness using various fractional operators, and found that the AB fractional 

model delivers more precise results with real data and has a higher efficiency rate than other operators. Qureshi and 

Atangana [19] studied the spread of dengue fever with the real data of Cape Verde islands using different fractional 

operators. Many researchers described their investigations for the COVID-19’s dynamics using different 

epidemiological models by considering AB fractional operators such as Abdo et al. [20] presented the solutions of 

a non-linear AB fractional model for the COVID-19’s spread through Adams-Bashforth numerical scheme. 

Similarly, Ahmad et al. [21] predicted the COVID-19’s spread in Pakistan by using AB-fractional SEIR model. 

Other applications of AB fractional derivative can be seen in fluid flow problems, prey-predator models, solar energy 

and heat transfer phenomena [22-26]. 

Motivated from the above literature, the present study describes COVID-19’s dynamics in Turkey by using SIR 

model. Initially, we modelled the present epidemiological problem in the form of three non-linear ordinary 

differential equations with classical order derivative. Then we generalized the integer order model into the fractional 

model by using AB fractional operator. Positivity and boundedness are shown for the present model. The basic 

reproduction numbers and equilibrium points are established. Stability analysis is also presented for disease-free 

and endemic equilibria. In the present study, we have considered the public reported data in the time interval of 10 

days i.e. from 30th October 2020 to 8th November 2020, and parameterized the given model for classical order with 

available data. For the provided fractional model, a numerical approach is constructed and the results for the 

fractional parameter are analysed. For global asymptotical stability, certain figures are displayed with varied initial 

conditions. 
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1. Mathematical Modelling 

The propagation of COVID-19 in the human population is examined in this study. The overall population is 

symbolized by ( )N t  which contains three different compartments i.e., susceptible, infected, and 

recovered/removed individuals and are represented with ( ), ( ) and ( )S t I t R t  respectively. Figure 1 shows the 

contact between these subgroups: 

 

Figure 1. Flow chart of the model. 

 

In this model,   is the birth/recruitment rate in the susceptible class,   represents the death rate,  is the 

interaction rate among infected and susceptible species with the route 
SI

N


 , and   is the removal/recovery rate of 

infected individuals. The mathematical form of the considered model can be written as: 
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2. Basic Reproduction Number 

Take a look at the second Eq. of system (1): 
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By putting disease free equilibrium here, we get: 
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3. Equilibrium points 

The two possible equilibrium points of model (1) at disease free (DFE) and endemic equilibrium are shown in this 

section (EE). Let's begin with: 
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Figure 2. Infection cases of COVID-19 between 30th October 2020 and 8th November 2020. 

From equation (7), the possible DFE is given as: 
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  0 0 0, , ,0,0 .DFE S I R
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Similarly, the EE of model (1) is calculated as: 
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4. Stability Analysis 

Theorem 4.1. If 
0 1  , The DFE 

DFE of the system (1) is locally asymptotically stable. 

 

Proof: At DFE, system (1)'s Jacobian matrix can be written as: 
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    (10) 

Suppose  denotes the eigenvalues of the Jacobian matrix 0J


. In this situation, the two negative eigenvalues of 

the aforementioned matrix, i.e.  (twice). The following characteristic equation can obtain the remaining required eigen 

values: 

  3 0 1      

.      

From equation (11), it can be noticed that , 0   . When 0 1  . As a result, the characteristics equation's coefficients are 

all non-negative. Furthermore, the eigenvalues of the aforementioned characteristic equation are negative according to 

Rough-Hurtwiz criterion. Thus, all the eigenvalues of the Jacobian matrix (10) are negative for 0 1  . As a result, when 

0 1  , the model (1) is locally asymptotically stable. 

5. Non-negativity and Boundedness of the Model 

 

The following lemma is used to demonstrate the model's positivity: 

 Lemma 3.1. Suppose 
n   is open,   , , 1 , 2 , 3 , . . . , .if i n    If  

0
( ) 0,

0n

i
i x X

f





 


 1 2, ,..., , 1,2,...,
T

nX x x x i n     , then      0 1 2 0, ,..., : ,0 ,n n

n          is the invariant 

domain of the following equation. 

  

 
 , , , 1,2,..., .

i

i t

dq t
f t X t i n

dt
       (11) 

Where 



            Ahmad et al 

 
 

23 

 

  0 1 2, ,..., : 0, 1,2,...,n

n iq q q q i n       (12) 

Preposition 3.1. The system (1) is invariant in 3


. 

Proof: From system (1), we have: 

   0, (0) 0,
dX

P X t X X
dt

       (13) 

          1 2 3 4( ) , , , .
T

P X t P X P X P X P X     (14) 

We noted that 

 

 

 

0

0

0

0

0 ,

0

S

I

R

dS t

dt

dI t SI

dt S R

dR t
I

dt












   





  
 


 



    (15) 

3


 is an invariant set, as stated by Lemma 3.1. 

Preposition 3.2. The system (1) is bounded in the region 

       3, , : ( ) .S t I t R t N t


 
    

 
    (16) 

Proof: The sum of all equations in system (1) may be used to establish the boundedness of problem (1): Equation (16) has 

the following solution: 

    ,N t N t   

We get the solution: 

   0 1 .t tN t N e e 



 
              (17) 

As t   then ( )N t



  . This indicates that the following is the feasible region for the given model: 
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    (18) 

As a result, the solution to system (1) is bounded. 
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Figure 3. COVID-19-related fatalities reported to the public from October 30th to November 8th, 2020. 

 

6. Fractional model and Numerical Scheme 

6.2 : Preliminaries: 

Definition 6.2.1: The time-fractional derivative of Atangana-Baleanu (AB) with fractional order   is defined as [27]. 
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Here,     is the normalization function and (.)E  is the Mittage-Leffler function [28]. 

Definition 6.2.2: Consider a non-linear fractional ODE: 

  0( ) , ( )   with  (0)ABC

t y t f t y t y y   ,         (20) 

Equation (23) has the following numerical scheme [29]:  
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 6.3  Fractional model: 

By utilizing the Atangana-Baleanu time-fractional operator, we get: 
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Here,   is fractional parameter and   0 .ABC

t

  AB time fractional operator.  

6.4 Numerical Scheme: 

Model (22) takes the following suitable form when using the procedure in [29]: 
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We get the following iterative form: 
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7. Data Fitting and Numerical Results 

7.1   Data Fitting 

Model (22) is fitted with real data by getting some parameter values from the literature and fitting or estimating the remaining 

values for data gathered during the time period under consideration. The model's solution is calibrated using real data from 

worldometer [30] for Turkey from October 30 to November 8, 2020.  Turkey's overall population is estimated to be 84675323 

people in 2020 [29]. The total population is considered as the total initial population i.e.  0 84675323N   which is 

subcategorized into three different classes such that the infected class that is denoted by I(0) and to be considered as 

I(0)=373154, the recovered or removed population is R(0)=dead+recovered=332652 and the remaining is considered as 

susceptible population S(0)=83969517. The values for the other parameters are portrayed in table 1. 0  is estimated as 

0 1.09457  for table 1 values.  
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Figure 4. Real data verses model fitting. 

Table 1. Model 1 estimated and fitted values for various parameters. 

Parameter Description Value Source 

  Birth rate  0N
 

Estimated 

  Natural Mortality rate 1

78.45 365
  

[31] 

   Contact rate 0.07992 Fitted 

  Recovery rate 0.07298 Fitted 

 
7.2   Numerical Results: 

This section of the article contains a variety of graphical results. The interaction between different compartments is 

seen in Figure 1. To forecast the transmission of COVID-19, it is critical to examine the virus's spread and the impact of these 

parameters. Figure 2 shows the publicly reported COVID-19 infected cases between October 30th and November 8th, 2020. 
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Figure 3 depicts the total number of deaths linked to COVID-19 throughout the relevant time period. The real data vs model 

fitting is seen in Figure 4. The graph shows that our model agrees well with real-world data. Moreover, the numerical results 

of the present model are calculated through a numerical scheme by using the computational software MATLAB. The time 

interval is considered in days. It is important to discuss here that the considered period is the most recent data, and we believe 

that it will give the current situation of COVID-19 in Turkey more precisely, and it will also give us more accurate predictions 

for the transmission of the disease. 

The COVID-19 spread in various classes are shown in Figure 5 using fixed values from Table 1. The impact of the fractional 

parameter   on different compartments is seen in Figure 6. The obtained solutions provide interesting findings and provide 

a range of results to the present model by changing   while keeping other variables constant. We can see from the graph that 

raising   reduces infected people and delays the time it takes to reach the maximum number in each compartment. With the 

exception of the susceptible class, decreasing   flattens the curves of all population compartments. The influence of contact 

rate   on different classes is portrayed in figure 7. By increasing  , susceptible individuals rapidly decrease and entered 

in the infected class which increases the number of infected individuals and then entered to the recovered class from the 

infected class by some means of recovery rate. Figure 8 displays the impact of the recovery rate   on the number of 

individuals in different compartments. From the figure, it can be seen that by increasing  increases the number of susceptible 

individuals and the same behavior of   can be also seen for the infected and recovered classes. This behavior of   is 

obvious because when we increase the recovery rate then the infected individuals will become quickly recover and will enter 

rapidly in the recovered class. If the infected individuals decreases, then the contact among the susceptible and infected 

individuals will be decreased because there will be not enough infected individuals to interact with the susceptible ones and 

in this way less people will get infected. Similarly, if fewer people get infected, then there will not be enough people remains 

in the infected class to recover and in this way the recovered class will be decreases. Furthermore, all of the figures show that 

we have forecasted COVID-19 dynamics and transmission in Turkey for the next 800 days. Figure 9 shows the global 

asymptotical stability of the current model when various initial values are taken into account. Finally, the vaiation of 0  

against   and   is presented in figure 10. It is noticed that the interaction rate   increases 0  while a decrease is noticed 

for large values of recovery rate . 
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Figure 5: Dynamics of COVID-19 in different classes for fixed values. 

 

 

 

Figure 6. Transmission of COVID-19 in different classes against fractional parameter  . 
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Figure 7. Transmission of COVID-19 in different classes against contact rate  . 

8. Concluding Remarks: 

The SIR model for COVID-19 transmission in Turkey has been explored in this paper. The model is both bounded and 

invariant, as we've demonstrated. Two equilibrium points, DFE and EE, are computed for the steady-state of the proposed 

model. In addition, the reproduction number is calculated. We've also used the recently developed AB fractional operator to 

the classic SIR model, which has been generalized. The real data was fitted to the classical model  1    using the data. 

The basic reproduction number has been estimated using the fitted values in table 1 as 0 1.09457  . Different graphical 

results have been produced after simulation of the numerical method. We've examined at days as a unit of time. Furthermore, 

COVID-19's behaviours are predicted for the following 800 days. By reducing the values of the fractional parameter  , a 

decline in the infected class is seen. An increase in infected class and decrease in susceptible class is observed by increasing 

the contact rate  . The opposite behavior for recovery rate   is noticed in susceptible and infected compartments. If we try 

to decrease the interaction between the people by taking some proper measurements then the infection will die out more 

quickly with less loss of individuals. Similarly, if we increase the recovery rate   by introducing some proper treatment or 
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vaccination, then the infection will die out from the population without great loss. Because infectious diseases are still 

uncontrollable on a global level. We are all aware that scientists and researchers are working to develop a good medical 

therapy or vaccine to prevent the development of COVID-19. In the future, the quarantine or vaccine categories, or both, 

might be added to the model to demonstrate how these classes affect the spread of this fatal acute disease. One can also add 

some control parameters in the present problem to show the effect of different controls such as isolation, vaccination or 

quarantine, etc. 

  

 

 

Figure 8. Transmission of COVID-19 in different classes against recovery rate  . 
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Figure 9. COVID-19 dynamics in various classes with various initial conditions. 

  

 

Figure 10. Variation in Reproduction number against interation and recovery rates. 
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