Thin film Maxwell-Power Law Fluid Flow on an extending surface

Authors

DOI:

https://doi.org/10.33959/cuijca.v6i1.68

Keywords:

Maxwell-Power-law fluid, Magnetohydrodynamics (MHD), Nanofluid thin film, Darcy-Forchheimer flow, Homotopy Analysis Method (HAM)

Abstract

In this research article, the examination is done on film flow of two-dimensional fluid along with transfer of heat in a magnetic field on an unsteady extending sheet. To gain the appropriate outputs for the flow efficiency and rate of transfer of heat, the Power law fluids are mixed with the viscoelastic fluids which reduce the viscosity of the fluids. The heat transfer rate is further improved with the inclusion of nanoparticles. The flow and heat transmission characteristics of a Maxwell, Power-law-model-fluid along with Joule absorption and changeable liquid sheet thickness are examined. The combined model of the two non-Newtonian fluids also incorporated the nanofluid's influence. To create the coupled comparable ordinary differential equations (ODEs) that the homotopy analytical method (HAM) along with appropriate similarity transformations are used. Impacts of variations of different significant factors like and number of fluid flow of fluid film with the transfer of heat are perceived. The influence of the unsteadiness factor on a thin film is discovered analytically for various estimations. Despite this, the implanted factors utilized for understanding the physical demonstration, like magnetic factor , inertial parameter , Eckert number , penetrability factor , Prandtl number Pr and Deborah number have been offered by graphs and deliberated in detail.

Author Biography

Taza Gul, Government Superior Science College, Peshawar, Pakistan

Dr. Taza Gul is Associate Professor in the Department of Mathematics. His Area of research covers ,

  • Computational Fluid Dynamics
  • Thin Film and Coating materials
  • Nanofluids
  • Fractional Calculus
  • Heat and Mass Transfer
  • perturbation technoques in Fluid Dynamics.

References

H. Masuda, A. Ebata, K. Teramae, N. Hishinuma. Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles. Netsu Bussei, 7, 1993, 227– 233.

S.U. S. Choi. Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows. FED 231/MD 66, 1995, 99– 105.

M. H. Esfe, M. Afrand. A review on fuel cell types and the application of nanofluid in their cooling. J Therm Anal Calorim., 140, 2020, 1633–1654.

O. Z. Sharaf, R. A. Taylor, E. Abu-Nada. On the colloidal and chemical stability of solar nanofluids: From nanoscale interactions to recent advances. Phys. Rep., 867, 2020, 1-84.

O. Z. Sharaf, N. Rizk, C. P. Joshi, et al. Ultrastable plasmonic nanofluids in optimized direct absorption solar collectors. Energy Convers. Manag., 199, 2019, 112010.

J. Buongiorno. Convective transport in nanofluids. ASME J. Heat Transf., 128, 2006, 240–250.

R.K. Tiwari, M. K. Das. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf., 50, 2007, 2002–2018.

D.A. Nield, A. V. Kuznetsov. The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf., 52, 2009, 5792–5795.

Y. Peng, A. S. Alsagri, M. Afrand, R. Moradi. A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation. RSC Adv., 9, 2019, 22185-22197.

A. Khan, T. Gul, Z. Zaheer, I. S. Amiri. The flow of ferromagnetic nanofluid over an extending surface under the effect of operative Prandtl model: A numerical study. Adv. Mech. Eng., 2019, https://doi.org/10.1177/1687814019896128.

M. Sheikholeslami, D. D. Ganji, H. R. Ashorynejad. Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol., 239, 2013, 259-265.

M. S. Alam, M. Ali, M. A. Alim, M. J. H. Munshi. Unsteady boundary layer nanofluid flow and heat transfer along a porous stretching surface with magnetic field. AIP Conf. Proc., 1851, 2017, 020023.

M. V. Krishna, A. J. Chamkha. Hall and ion slip effects on Unsteady MHD Convective Rotating flow of Nanofluids—Application in Biomedical Engineering. J. Egypt. Math. Soc., 28, 2020, 1.

M. Ramzan, S. Riasat, Z. Shah, et al. Unsteady MHD carbon nanotubes suspended nanofluid flow with thermal stratification and nonlinear thermal radiation. Alex. Eng. J., 59 (3), 2020, 1557-1566.

I. A. Hassanien, A. A. Abdullah, R. S. R. Gorla. Flow and Heat Transfer in a Power-Law

Fluid over a Nonisothermal Stretching Sheet. Mathl. Comput. Modelling, 28( 9), 1998,105-116.

J.H. Rao, D.R. Jeng, K.J. De Witt, Momentum and heat transfer in a power law fluid with arbitrary injection/suction at a moving wall, Int. J. Heat Mass transfer 42(1999) 2837 - 2847 .

M.S. Abel, P.S. Datti, N. Mahesha, Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source, Int. J. Heat Mass Transfer 52(2009) 2902 - 2913.

C. Chen, Magneto-hydrodynamic mixed convection of a power law fluid past a stretching

surface in the presence of thermal radiation and internal heat generation/absorption, Int. J.

Nonlinear Mech. 44(2009)596 - 603.

X.H. Si, X.D. Zhu, L.C. Zheng, X.X. Zhang, P. Lin, Laminar film condensation of pseudo-plastic non-Newtonian fluid with variable thermal conductivity on an isothermal vertical plate, Int. J. Heat Mass Transf. 92 (2016) 979–986.

Y. Zhang, M. Zhang, Y. Bai, Unsteady flow and heat transfer of power-law nanofluid thin film over a stretching sheet with variable magnetic fie ld and power-law velocity slip effect, J. Taiwan Inst. Chem. Eng. 70 (2017) 104–110.

Y. Zhang, M. Zhang, Y. Bai, Unsteady flow and heat transfer of power-law nanofluid thin film over a stretching sheet with variable magnetic field and power-law velocity slip effect, J. Taiwan Inst. Chem. Eng. 70 (2017) 104-110.

Y. Bai, X. Liu, Y. Zhang, M. Zhang. Stagnation-point heat and mass transfer of MHD Maxwell nanofluids over a stretching surface in the presence of thermophoresis. J. Mol. Liq. 2016, 224, 1172–1180.

R. Jusoh, R. Nazar, I. Pop. Flow and heat transfer of magnetohydrodynamic three-dimensional Maxwell nanofluid over a permeable stretching/shrinking surface with convective boundary conditions. Int. J. Mech. Sci. 2018, 124, 166–173.

M. Jawad, Z. Shah; S. Islam, W. khan, A. Khan, Nanofluid thin film Flow of Sisko Fluid and Variable Heat Transfer over an Unsteady Stretching Surface With External Magnetic Field, Journal of Algorithem & Computational Technology, 10.1177/1748301819832456 (2019).

K.V. Prasad, S.R. Santhi, P.S. Datti. Non-Newtonian power-law fluid flow and heat transfer over a non-linearly stretching surface. Appl.Math.2020, 3(5): 425-435. 10.4236/am.2012.35065

J. Wu, M.C. Thompson. Non-Newtonian shear-thinning flows past a flat plate.J. Non-Newton. Fluid Mech. 1996, 66: 127-144. 10.1016/S0377-0257(96)01476-0

D. Vieru, C. Fetecau, C. Fetecau. Flow of a viscoelastic fluid with fractional Maxwell model between two side walls perpendicular to a plate. Appl. Math. Comput. 2008, 200: 459-464. 10.1016/j.amc.2007.11.017

R. Caenn, H.C.H. Darley, G. R.Gray, Chapter 1 - Introduction to Drilling Fluids, Composition and Properties of Drilling and Completion Fluids (Seventh Edition), 2017, Pages 1-34, https://doi.org/10.1016/B978-0-12-804751-4.00001-8

W.R. Schowalter. The application of boundary-layer theory to power-law pseudo plastic fluids: similar solutions, AIChE J., (1960.) 6, 24-28

A. Acrivos, M.J. Shah, E.E. Petersen. Momentum and heat transfer in laminar Boundary-Layer flows of non-Newtonian fluids past external surfaces. AIChE Journal, 1960, 6, 312-317

T.G. Howell, D.R. Jeng, K.J. De Witt. Momentum and heat transfer on a continuous moving surface in a power law fluid, Int. J. Heat Mass Transf., 1997, 40(8), 1853-1861

J.H. Rao, D.R Jeng, K.J DeWitt. Momentum and heat transfer in a power-law fluid with arbitrary injection/suction at a moving wall, Int. J. Heat Mass Transf., 1999, 42, 2837-2847.

Ionescu, C.M.; Birs, I.; Copot, D.; Muresan, C.I.; Caponetto, R. Mathematical modeling with experimental validation of viscoelastic properties in non-Newtonian fluids. Philos. Trans. R. Soc. A 2020, 378, 20190284.

Nguyen, T.; van der Meer, D.; van den Berg, A.; Eijkel, J.C. Investigation of the effects of time periodic pressure and potential gradients on viscoelastic fluid flow in circular narrow confinements. Microfluid. Nanofluid. 2017, 21, 37.

S.J. Liao. The proposed homotopy analysis technique for the solution of nonlinear problems (Doctoral dissertation, Ph. D. Thesis, Shanghai Jiao Tong University) (1992).

S. J. Liao. On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation. 147(2) 2004, 499-513.

A. Rehman, Z. Salleh, Taza Gul, Z. Zaheer. The Impact of Viscous Dissipation on the Thin Film Unsteady Flow of GO-EG/GO-W Nanofluids, Mathematics, (2019) 10.3390/math7070653.

Taza Gul, W. A Khan, M. Tahir, R. Bilal, I. Khan, K. S. Nisar, Unsteady Nano-Liquid Spray with Thermal Radiation Comprising CNTs, Processes, 7, (2019), 181; Doi:10.3390/pr7040181.

N.S. Khan, Taza Gul, S. Islam, I. Khan, M.A. Aisha, S.A Ali, Magnetohydrodynamic Nanoliquid Thin Film Sprayed on a Stretching Cylinder with Heat Transfer, Applied Science.7 (2017), 271-296.

T. Gul, M. Z. Ullah, A.K. Alzahrani, I.S. Amiri. Thermal performance of the graphene oxide nanofluids flow in an upright channel through a permeable medium. IEEE Access, 7(2019), 102345-102355.

Downloads

Published

2023-12-12

How to Cite

Gul, T., & Khan, Z. (2023). Thin film Maxwell-Power Law Fluid Flow on an extending surface. City University International Journal of Computational Analysis, 6(1), 1–10. https://doi.org/10.33959/cuijca.v6i1.68

Issue

Section

Articles

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.