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A B S T R A C T 

Heat transfer in rotating, incompressible viscous fluid near an infinite vertical 

plate that applies a time-dependent shear stress ( )f t  with ramped wall 

temperature is investigated. Closed form exact solutions of the dimensionless 

governing equations along with imposed initial and boundary conditions are 

determined using the Laplace transform technique. These solutions are 

uncommon in literature and can generate exact solutions for any motion of 

problem with technical relevance of this type. The effects of different system 

parameters, such as Ekman number, Grashof number, Prandtl number, 

magnetic number and time on the velocity is examined in detail. Its influence 

on the fluid motion is graphically displayed. Some special cases together with 

particular cases are considered. 

1. Introduction  

 

 The wall conditions about velocity and temperature are arbitrary and non-uniform in many daily life problems. 

To investigate such problems, the step change in wall temperature is useful. In several practical situations, for example, 

nuclear heat transfer control, materials processing, building heat transfer, turbine blade heat transfer and electronic 

circuits, the ramped wall temperature has useful applications. Having such motivation, Narahari et al. [1] considered the 

mass transfer and free convection current effects on unsteady viscous flow with ramped wall temperature. Seth and Ansari 

[2] investigated the thermal diffusion and heat absorption effects on the MHD natural convection flow past an impulsively 

started vertical plate with ramped wall temperature. Seth et al. [3] studied the impulsive motion of a plate in the presence 

of radiation effect and considered the fluid to be electrically conducted under the assumption of small magnetic Reynolds’ 

number and passing through a porous medium. Chandran et al. [4] investigated analytically the unsteady natural 

convection flow of an incompressible viscous fluid near a vertical plate with ramped wall temperature using the Laplace 

transform technique. Sami et al. [5] extended this work by investigating the unsteady magneto hydrodynamic flow past an 

impulsively started vertical plate embedded in a porous medium in the presence of thermal diffusion and ramped wall 

temperature at the plate. Khan et al. [6] investigated the radiation and thermal diffusion/Soret effects on a magneto 
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hydrodynamic (MHD) free convection flow of an incompressible viscous fluid near an oscillating plate embedded in a 

porous medium. 

 

Besides the ramped wall temperature, rotating flows make an important branch of fluid dynamics. Because, in many 

practical applications, the thermal rotating flows occur in a variety of rotating machinery. Together with heat transfer, the 

rotating flows applications are found in some natural phenomena such as geophysical systems, tornadoes, hurricanes and 

ocean circulations. The flow and heat transfer due to moving surfaces have many practical applications, such as in 

polymer processing systems, production of paper and insulating material. Khan et al. [7, 8] presented the magneto 

hydrodynamic rotating flow of a generalized Burgers’fluid in a porous medium. However, they only considered the 

momentum transfer and the heat transfer phenomenon was not incorporated. Perhaps, it is due to the fact that when 

momentum equation becomes coupled with energy equation because of free convection term, then the resulting equation 

becomes complicated and it is not easy to solve particularly in closed form. Therefore, mostly the rotating flow problems 

are dealt with numerical or approximate techniques in such types of situations [9, 10]. Ismail et al. [11, 12] investigated 

rotation effects on unsteady MHD free convection flow in a porous medium followed by Qushairi et al. [13] where they 

studied the unsteady free convection flow of a rotating second grade passing through a porous medium. However, it is 

worth pointing out that all these papers have a common specific feature. Namely, they solved problems in which the 

velocity is given on the boundary. This constitutes one of the three types of boundary value problems in fluid mechanics. 

In other two types, either shear stress is given on the boundary or velocity and shear stress are mixed at the boundary wall. 

From theoretical and practical point of view, all three types of boundary conditions are identically important. In the last 

two years, the researchers working on exact solutions, extended the idea of arbitrary wall shear stress to the heat transfer 

problems. This work was pioneered by Fetecau et al. [14, 15], where they investigated free convection flow near a 

vertical plate that applies arbitrary shear stress to the fluid when the thermal radiation and porosity effects are taken into 

consideration. Soon after, Khan et al. [16, 17], extended this idea of arbitrary wall shear stress to the conjugate 

phenomenon of heat and mass transfer for the conducting viscous fluid near a vertical plate with ramped wall temperature 

and constant mass diffusion such that the fluid is passing through a porous medium. However, all these studies were 

performed in a non-rotating frame of reference. 

 

Therefore, the main objective of this work is to provide exact solutions for the heat transfer analysis in MHD, an 

incompressible rotating viscous fluid over an infinite vertical plate that applies a time-dependent shear stress ( )f t   

 to the fluid with ramped wall temperature. The solution corresponding to the general case ( )f t , can be used to obtain 

solutions for many problems. Some special cases are extracted from the general solutions together with some particular 

solutions, if the angular velocity of the frame tends to zero, the solutions of some known problems are recovered. To 

illustrate the theoretical and practical importance of the studied problem, the effect of embedded parameters on the 

dimensionless velocity is graphically analyzed. 

 

2. Governing equations and solutions 
 

Let us consider an infinite vertical plate surrounded by an infinite mass of incompressible viscous fluid with ramped wall 

temperature. The x  axis of the coordinate system is taken along the plate and z axis is normal to the x  axis. Initially, 

1T   is the temperature for plate and the fluid. At time 0t  , the plate applies a time dependent shear stress ( )f t to the 

fluid along the x  axis. Both the plate and fluid temperature aroused or lowered to  

1 1 1

0

( )w

t
T T T

t
    when 0 ,t t and thereafter for 0t t  remained at isothermal temperature 1 .wT  Meantime, the fluid 

together the plate, starts to rotate about 1y axis  with a constant angular velocity .  Under the usual Boussinesq’ 

approximation, the unsteady flow is governed by the following set of partial differential equations which are 

 

1

22
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  (1) 
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2
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2
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,p

T y t T y t
C k
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
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
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             (3) 

 

Where 1 1( , )u y t  and  1 1( , )v y t  are the velocity components along the x axis and 1y axis respectively, .  is 

oscillation frequency; g  is the gravitational acceleration, 
1T the coefficient of volume expansion, v  shows the 

kinematic viscosity,   is the constant density of the fluid, pC  is the specific heat at constant pressure, k  is the 

coefficient of thermal conductivity,  is  the electric conductivity of the fluid; 0B shows applied magnetics field and 

1 1( , )T y t  is the temperature of the fluid. 

  

We assume that no slip appears between the plate and fluid, thus the corresponding initial and boundary conditions 

are 

1 1 1 1 1 1 1 1

1
1

1

1 1 1 1 0 1 1 0

0

1 1 1 1

( ,0) 0, ( ,0) 0, ( ,0) ; 0,

(0, ) ( )
, (0, ) 0, 0,
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w w

u y v y T y T y

u t f t
v t t

y

t
T t T T T t t T t T t t

t

u t v t T t T t





 



    


  



      
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      (4) 

Where 
2

0 0Pr , ,
pC B t

M
k

 


 
            (5) 

Pr is a Prandtl number. 

By introducing the following dimensionless variables 

* * * *0 0 1 1 1
1 1 1 1 1 1

1 1 0

* * * *0
0

0

, , , ,

, ( ) ( ),

w

t t T T y
u u T y

v v T T vt

tt
t f t f t t

t

 








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
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       (6)

    

Into Eqs. (1) and (2) and dropping out the star notations it yields 

   2

1 1 1 1

1 1 1 12

1

, ,
2 ( , ) ( , ) ( , ),

u y t u y t
Ek y t GrT y t Mu y t
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
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     (7) 

   2

1 1 1 1

1 1 12

1

, ,
2 ( , ) ( , ),

y t y t
Ek y t M y t

t y

 
 

 
  

 
       (8) 



Khan et. al

 

 4 

   2

1 1 1 1

2

1

, ,
Pr ,

T y t T y t

t y

 


 
          (9) 

Where 

 
1 1 1

03 2

0 0 0

, , ,
T wg T T

Gr Ek t
U t U

    
           (10) 

are the Grashof number and the dimensionless ratio
0t


 is  define as the Ekman number and 0t  is the characteristics time 

respectively. 

 

The corresponding dimensionless initial and boundary conditions are: 

 

     

       
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1
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y
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u
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y

T t u t v t


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
      



     

     (11) 

 

The dimensionless temperature and the surface heat transfer rate respectively are given by [16, 17] 

   
2 2

1 1 1
1 1

Pr Pr PrPr
, exp

2 42

y y yt
f y t t erfc y

tt 

    
       
    

        (12) 

and 

 
 

  
1

1

1 0

, 2 Pr
1 1

y

T y t
t t H t

y 



   


        (13) 

where erf c (:) is the complementary error function of Gauss. 

In order to obtained the velocity field, we use the complex velocity field 1 1 1 1( , ) ( , ) ( , )F y t u y t i y t   and taking 

12 , ( , )H M iEk F y t   is the solution of the problem 

   
     

2
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1
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 
   
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   
 

 
1

1

1

1 0

,
, 0, , 0, ,

y

F y t
F y t F t f t

y



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
   (15) 

Applying the Laplace transform to Eq.  14  and bearing in the mind the corresponding initial conditions for   1 ,F y t   

yields 

 
 

   
2

1

1 1 12

1

,
, , ( ) , ,

F y q
qF y q GrT y q H M F y q

y


   


      (16) 

where  1 ,F y q  is the Laplace transform of the function   1 ,F y t  . The corresponding boundary conditions (15),  become 

 
 

 
1

1

0

1

,
, 0, | ,y

F y q
F q F q

y



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
         (17) 
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 F q being the Laplace Transform of function  .f t  

The solution of Eq.  16  under the conditions  17 is given by  

       1 1 1 2 1 3 1, , , , ,F y q F y q F y q F y q           (18) 

Where 

 
 

 

 
   

 
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1 1
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1 1 1
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2 1 2 2

2 2

Pr Pr3 3
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, ,

, ,

q
y q H M y q H M

q
y q y q

F q
F y q y q H M

q H

a q a qe
F y q e e

q q a q H M q q a q H M

a e a
F y q e e

q q a q q a


     


 

    


 
     
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  (19) 

With 

1 2 3

Pr
, ,

Pr 1 Pr 1 Pr 1

Gr H M Gr
a a a


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  
  

By using the following function 

     
1 2

1 (2 )1
1 1 1 1 2 1

1
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4
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   (20) 

With 

         
2 2
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1 1 2 1
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 (21) 

and applying the convolution theorem, we have the inverse Laplace transform for the first term of Eq.  19 , namely, 

         1

1 1 1 1 1 1 2 1{ , } , , , ,L F y q f t r y t S y t iS y t            (22) 

 

where   represents convolution product and  
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k

f t s e
S y t E M s ds

s

f t s e
S y t E M s ds

s










  


 





      (23) 

For the second term from Eq.  19 , we take    22 / Pr 1,kn E M a in      and 
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 
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a q
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q q a
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          (24) 

The inverse Laplace transform of Eq.  24 is: 
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we get 
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where 
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The inverse Laplace of the third term,  3 1,F y q is obtained and given by: 
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, erf exp

2 42

Pr Pr Pr Pr
erf exp cos sin

2 42

, , ,

iy y y t y
L F y q a t c e

tt

y y y t y
a t c nt i nt

tt

R y t iR y t






     

          
     

     
               

 

 (30) 

where 

 

 
  

     
 

  

     
 

2 2
1 1 1 1

2 2
1 1 1 1

3 0

5 1 Pr Pr Pr Pr

2 42

1

3 0

Pr Pr Pr Pr

2 42

cos

,
erf exp

cos 1

1 ,
erf exp

t

y y y s y

ss

t

y y y s y

ss

a n t s

R y t H t
s c ds

a n t s

H t
s c ds











 
 
   
    

  
  
   
    

    (31) 
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 
  

     
 

  

     
 

2 2
1 1 1 1

2 2
1 1 1 1

3 0

6 1 Pr Pr Pr Pr

2 42

1

3 0

Pr Pr Pr Pr

2 42

sin

,
erf exp

sin 1

1 .
erf exp

t

y y y s y

ss

t

y y y s y

ss

a n t s

R y t H t
s c ds

a n t s

H t
s c ds











 
 
   
    

  
  
   
    

    (32) 

 

Now, the velocity components  1 1 ,u y t  and  1 1 ,v y t  as the real and imaginary parts of the complex velocity field are 

obtained as 

         1 1 1 1 1 3 1 5 1, Re , , , , ,u y t F y t S y t R y t R y t            (33) 

 

         1 1 1 2 1 4 1 6 1, Im , , , , ,v y t F y t S y t R y t R y t            (34) 

where            1 1 2 1 3 1 4 1 5 1 6 1, , , , , , , , , ,S y t S y t R y t R y t R y t and R y t  are obtained in Eqs. (23), (28), (29), (31), and (32) 

respectively. 

3. Plate with constant temperature 

Equations (12), (33) and (34) give analytical expressions for the temperature and velocity of rotating fluid with 

ramped temperature. In order to highlight the effect of the ramped temperature distribution of the boundary on the flow, it 

is important to compare such a flow with the constant temperature. By adopting the same long but straight forward 

procedure, the temperature, rate of heat transfer and velocity are evaluated as: 

  1
1 1

Pr
, erf ,

2

y
T y t c

t

 
   

 
          (35) 

 1

1

0, Pr
,

T t

y t


 


           (36) 

   
 

  

     

     

  

2
1

4

1 1 1
0

2
2

0
1 1

0 2

0

1
3

0

1
, Re , cos 2

cos 2 cos2 1
exp

4 sin 2 sin

Pr
cos erf ,

2

y

s
t

k

t s

kt

t s

k

t

f t s e
u y t F y t E M s ds

s

E M s n t s x dxa y
ds

ss E M s n t s x dx

y
a n t s c ds

s












     

                 

 
    

 







   (37) 
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   
 

  

     

     

  

2
1

4

1 1 1
0

2
2

0
1 1

0 2

0

1
3

0

1
, Im , sin 2

cos 2 sin2 1
exp

4 sin 2 cos

Pr
sin erf .

2

y

s
t

k

t s

kt

t s

k

t

f t s e
v y t F y t E M s ds

s

E M s n t s x dxa y
ds

ss E M s n t s x dx

y
a n t s c ds

s












    

                 

 
    

 







  (38) 

 

4. Special Cases 

The solutions of velocity obtained in Section 3, are more general. Hence, in this section we intend to discuss some special 

cases of the present solutions together with some particular cases in order to gain more about the physical insight of the 

problem. So, we discuss the following important special cases whose technical relevance is well-known in the literature. 

4.1. Case-I:  ( ) ( )f t f t   (Constant Shear stress on the plate) 

In this first case we take the arbitrary function  ( ) ( ),f t f t   where f is a dimensionless constant and ( )   denotes the 

unit step function.   1 1,S y t  and   2 1 ,S y t  take the following forms 

    

    

2

1
1 1

0

2

1
2 1

0

, exp cos 2 ,
4

, exp sin 2 .
4

t

k

t

k

yf
S y t E M s ds

ss

yf
S y t E M s ds

ss





 
    

 

 
   

 





      (39) 

The velocity components   1 1 ,u y t   and   1 1 ,v y t   are given by Eqs.  33  and  34  in which the functions   1 1,S y t   and  

 2 1 ,S y t   are replaced by the expressions given in Eq.  39 .  

4,2. Particular Case   0,  , Non-rotating frame  

In this case the Ekman number and megnatic term becomes zero, hence Eq.  39  reduces to 

 
2

1
1 1

0
, exp ,

4

t yf
S y t ds

ss

 
   

 
         (40) 

which is in good agreement with the earlier reported result by   14, Eq. (23) .   

4.3. Case-II:  ( ) ( 0)af t ft a   (An accelerating Shear Stress) 

In the final case, we take  ( ) ,af t ft  in which the plate applies an accelerating shear stress to the fluid,   1 1,S y t  and 

 2 1 ,S y t can be written as: 
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      

      

2

1
1 1

0

2

1
2 1

0

, exp cos 2 ,
4

, exp sin 2 .
4

t a

k

t a

k

yf
S y t t s E M s ds

ss

yf
S y t t s E M s ds

ss





 
     

 

 
    

 





     (41) 

 

4.4 Particular Case   0,  (Non-rotating frame) 

In this case the Ekman number becomes zero as in above case, hence Eq.   41 reduces to: 

   
2

1
1 1

0
, exp ,

4

t a yf
S y t t s ds

ss

 
    

 
        (42) 

which is equivalent to [ 15 , Eq. (33) ]. 

5. Results and Discussion 

In order to understand the physical aspects of the problem, the graphical results for both of the velocity 

components   1 1 ,u y t   and   1 1 ,v y t   are plotted for various parameters of interest such as Ekman number  ,Ek  the 

Grashof number  Gr  and the Prandtl number  Pr.  The graphs corresponding to the velocity components   1 1 ,u y t   and  

 1 1 ,v y t   are plotted in Figures  1  - 6,  for constant shear stress on the plate. The primary and secondary velocity profiles 

at different values of Ekman number Ek   for both ramped and constant wall temperature are shown in Figs. 1  and 2 , It is 

found that the velocity is decreasing with increasing values of  Ek   in both cases of ramped and isothermal plates. 

Physically, it is true due to the fact that increasing values of  Ek   causes the frictional force to increase which tends to 

resist the fluid flow and thus reducing its velocity. Figs.  3 and 4   illustrate the influence of Grashof number  Gr   on both 

type of velocity profiles. It is observed that velocity increases with increasing .Gr  This implies that thermal buoyancy 

force tends to accelerate velocity for both ramped temperature and isothermal plates. Graphical results to show the 

influence of the Prandtl number  Pr  on the velocity profiles are presented in Figs.  5   and  6.   It is observed that the 

velocity is a decreasing function with respect to  Pr   in both cases of ramped and constant wall temperature. 

 

6. Conclusions 

The purpose of this work is to study the heat transfer in Ekman boundary flow of a rotating, incompressible viscous fluid 

over an infinite plate with ramped wall temperature and applies an arbitrary shear stress to the fluid. Exact solutions of 

velocity (for both cases of ramped and constant wall temperature) are obtained using the Laplace transform technique and 

expressed in terms of exponential and complementary error functions. They satisfy all imposed initial and boundary 

conditions. These solutions are plotted in various figures for different parameters of interest. The following conclusions are 

extracted from this study. 

 It is seen that velocity increases with increasing  .Gr   

 It is investigated that the velocity is a decreasing function with respect to  Pr   in both cases of 

ramped and constant wall temperature. 

 It is found that the velocity is decreasing with increasing values of  Ek   in both cases of ramped and 

isothermal plates. 
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Fig.  1. Primary velocity profiles for different values of  Ek  
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Fig. 2. Secondary velocity profiles for different values of  Ek  . 

 

 

Fig.  3. Primary velocity profiles for different values of  Gr  . 
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Fig. 4. Secondary velocity profiles for different values of  Gr  . 
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Fig.  5. Primary velocity profiles for different values of  Pr  . 

 

Fig.  6. Secondary velocity profiles for different values of  Pr  


