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In this article, the unsteady flow of Casson fluid between two side walls
normal to the plate is studied by using Fourier finite and infinite sine
transform techniques. The bottom plate subjected to impulsive motion
to the fluid at the time t = 0+.Exact solutions have been established,
which satisfy the governing equation and appropriate boundary and
initial conditions. The obtained results are reduced to those solutions
consequent to the flow over an infinite plate, when h → ∞,and Newto-
nian fluid by making Casson parameter β → ∞. Keeping in view the
measure velocity value and shear stress in the middle of the channel,
being not to be affected due to side walls, the required time to attain the
steady-state and the distance between the side walls in such conditions
is calculated graphically.

1 Introduction

The fluid that obeys Newton’s law of viscosity and is easily described by the Navier Stock’s equation is
called Newtonian fluid. The flow of viscous fluid over an infinite plate with different initial and boundary
conditions is discussed by numerous authors [1 - 4]. Puri et al. [5] obtained the closed-form solutions for
the unsteady flow of viscous fluid in the presence of a magnetic field in a rotating frame by using the
Laplace transform method. The starting solution of a three-dimensional unsteady MHD flow of viscous
fluid in a rotating frame passing through a porous medium is obtained by Sulochana [6]. These flows
also extended for non-Newtonian fluids by many authors [7 - 12]. In the mentioned references [1 - 12] the
authors extended these flows for infinite plates. Moreover, the effect of side walls on the flow of fluid is
very important and therefore, some researchers are interested to know about the distance for which the
measured velocity value and shear stress are unaffected by the side walls. Due to the above importance,
the researchers [13 - 16] studied the flow of fluid over an infinite plate between two side walls using
different boundary and initial conditions. In nature, some non-Newtonian fluids are exits that behave
like elastic solids i.e. at small shear stress no flow occurs, Casson fluid is one of such fluid. This fluid is
quite famous recently because of its distinct features. In 1959, the first model was introduced by Casson
to estimate the properties of the flow of pigment-oil suspensions [17]. Casson fluid can be defined as a
shear-thinning liquid that is assumed to have infinite viscosity at a zero rate of shear, and a yield stress
below which no flow occurs and a zero viscosity at an infinite rate of shear [18]. So, if, the magnitude of
shear stress of Casson fluid increases from the yield shear stress, then behaves like a rigid body, and such
fluids are treated as purely viscous because of very high viscosity [19]. The examples of Casson fluids
are jelly, tomato sauce, soap, and honey, etc. Later on, Casson fluid is studied by many researchers for
different flow configurations and situations. Among them, a solution for the unsteady flow of Casson
fluid passed over a semi-infinite vertical plate with thermal and hydrodynamic slip conditions is obtained
by Rao et al. [20]. Hussanan et al. [21] investigate the boundary layer flow of Casson fluid passed an
oscillating vertical plate with Newtonian heating. Mustafa et al. [22] consider the unsteady flow of Casson
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fluid past over a moving flat plate with a heat transfer effect. A closed-form solution for the boundary
layer flow of Casson fluid over a permeable shrinking / stretching sheet without and with an extended
magnetic field was obtained by Bathacharyya et al. [23-24]. Raju [25] has studied the effect of an induced
magnetic field on the stagnation flow of Casson fluid. The pioneering work on the closed-form solution
for free convection and electrically conducting the flow of Casson fluid over an oscillating vertical plate
passing through a porous medium is studied by Khalid et al [26]. Makanda [27-28] has discussed the
effect of radiation as well as the chemical reaction of Casson fluid flow. Many researchers [29 - 32] studied
the Casson fluid and obtained the solutions by using exact analytical methods or numerical methods
under different boundary conditions. After a thorough review of the related literature, there have been
no investigations on the effect of side walls on Casson fluid when the velocity is given on the boundary.

2 Mathematical Analysis of the Problem

Let us consider the unsteady two-dimensional flow of Casson fluid between two parallel side walls normal
to the infinite plate and initially both, fluid and plate are stationary. At times t = 0+,the bottom plate
is subjected to impulsive motion to the fluid. Due to the impulsive motion, the fluid is gradually moved
as shown in Fig. 1. The velocity field for the above description can be expressed as:

V⃗ = u (y, z, t) i, (1)

where i represents unit vector along the x-axis of the Cartesian coordinate system x, y and z. The
rheological equation for the incompressible flow of Casson fluid is given by [31]:

τij =

 2
(
µB +

py√
2π

)
eij , πc < π

2
(
µB +

py√
2πc

)
eij , πc < π

 , (2)

here, π represents the product of the component of the rate of deformation with itself, µB stands for
plastic dynamic viscosity, eij denotes (ij)thcomponents of the deformation rate, py is the yield stress of
the fluid and πc represents the critical value of this product based on the non-Newtonian model. For
such a flow, the constraint of incompressibility is
automatically satisfied and the governing equation after using equations (1) and (2), is

∂u (y, z, t)

∂t
= ν

(
1 +

1

β

) (
∂2u (y, z, t)

∂y2
+

∂2u (y, z, t)

∂z2

)
, y, t > 0, z ∈ [0, d] , (3)

whereν = µB

ρ denotes kinematic viscosity,drepresents distance between the walls, β = µB

√
2πc/py is the

Casson parameter and the appropriate initial and boundary conditions are:

u(y, z, 0) = 0 for y > 0, z ∈ [0, d],
u(y, 0, t) = u(y, d, t) = 0 for y, t > 0,
u(0, z, t) = u0 for t > 0, z ∈ (0, d),

 , (4)

∂u (y, z, t)

∂y
, u (y, z, t) → 0, as y → ∞, for t > 0, z ∈ [0, d] . (5)

3 Procedure for Solution of Problem

We consider the flow of Casson fluid between two parallel side walls over an infinite plate which is situated
at the planes z = 0 and z = d, the flow is confined in (x, z)−plane and between two side walls placed in
the planes z = d and z = 0. At time t = 0+, the plate applies an impulsive motion to the fluid.

u(0, z, t) = u0 for t > 0, z ∈ (0, d). (6)

Both sides of governing Eq. (3) is multiplying by
√

2
π cos (yζ) sin (λnt) , where λn = nπ

d , and then inte-

grating the obtained result with respect to z and y from 0 to d and 0 to ∞ respectively, and keeping in
mind the boundary and initial conditions Eq. (4) and (5), we get the following differential equation.

∂usn(y, z, t)

∂t
+ ν

(
1 +

1

β

) (
ζ2 + λ2

n

)
usn (ζ, t) = −

√
2

π
νζu0

(
1 +

1

β

)
(−1)

n − 1

λn
, n = 1, 2, .., (7)

42



M. Ali

Figure 1: Schematic Diagram

here the Fourier finite and infinite sine transforms of u (y, z, t)is:

usn (ζ, t) =

√
2

π

d

∫
0

∞
∫
0
u(y, z, t) sin (λnz) sin (yζ) dydz, n = 1, 2, 3.., (8)

and it satisfies the following initial condition:

ucn (ζ, 0) = 0 for ζ > 0 and n = 1, 2, 3...., (9)

Eq. (7) can be expressed an ordinary differential equation in variable t for each fixed ξ, and by using the
initial condition Eq. (9) , we get the solution of Eq. (7) as:

usn (ζ, t) =
−ζ

√
2
πu0

ζ2 + λ2
n

(−1)
n − 1

λn

[
1− exp

(
−ν

(
1 +

1

β

) (
ζ2 + λ2

n

))
t

]
. (10)

Now taking inverse Fourier finite and infinite sine transforms of Eq. (10), we get us(y, z, t) under the
form:

us(y, z, t) =
−8u0

πd

∞∑
n=1

sin(λnz)
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∫∞0

ζ sin(ζy)
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n

e
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8u0
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∫∞0

ζ sin(ζy)

ζ2 + λ2
n

dζ,

(11)
setting d = 2h, m = 2n − 1 and varying the origin of the coordinate system, substitute z = z′ + h and
ignore the prime notation, Eq. (11) implies:

us(y, z, t) =
−4u0

πh
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n=1

(−1)n cos(ηmz)
ηm

∫∞0
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ζ2+η2

m
dξ + 4u0
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(
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β
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(12)

where ηm = (2n− 1) π
2h , now let N = 1

1+
1
β

, and some identities used in this problem are (see also

appendix A):

∫∞0
ζ sin (ζy)

ζ2 + a2
dζ =

π

2
e−ya, Re (a) ≥ 0, (13)
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∫∞0
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where a2 = η2m and ν = ν
(
1 + 1

β

)
, by using the above identities we get the below expression for velocity

field:
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 . (15)

Eq. (15) is the starting solution which satisfy all appropriate initial and boundary conditions.

4 Special Cases

4.1 Flow over an Infinite Plate

In the absence of the side walls, i.e. h → ∞, into Eq. (15), we get the simplified form:

uC(y, z, t) = u0erfc

 y

2

√
ν
(
1 + 1

β

)
t

 . (16)

4.2 Flow of Newtonian Fluid over an Infinite Plate

By putting β → ∞ into Eq. (16), we get the velocity us(y, z, t) for Stoke’s 1st problem of Newtonian
fluid:

uN (y, z, t) = u0erfc

(
y

2
√
νt

)
. (17)

5 Numerical Results and Discussion

This paper describes about the study of the unidirectional and two-dimensional flow of Casson fluid
between two parallel side walls perpendicular to an infinite bottom plate. The bottom plate provides an
impulsive motion to the fluid. Due to this impulsive motion, the fluid moves gradually in its own plane.
Exact solutions of velocity are determined for the described motion by using the integral transforms,
namely Fourier finite and infinite sine transforms which satisfy all imposed initial and boundary condi-
tions. Expressions for the flow of Casson fluid over an infinite plate by taking h → ∞, are determined
as a special case and also it has been noticed that for extremely large values of β i.e. β → ∞, the
non-Newtonian Casson fluid takes the behavior of the Newtonian fluid. In Fig. 2 we note that time is the
increasing function of velocity i.e. when the time increases the velocity of the fluid flow also increases.
Fig. 3 illustrates that the velocity of the fluid increases by increasing the distance between the side walls.
The influence of the Casson fluid parameter on the velocity profile is shown in Fig. 4 and it is found that
there is inverse variation between Casson parameter β and velocity. To find out the distance between
the side walls for which the calculated value of velocity in the center of the channel is not affected by
the existence of the side walls is shown in Fig. 5. The variation of time and Casson parameter β can be
observed in Figs. 6 and 7 and we note from these figures that velocity is the decreasing function of Casson
parameter and increasing function of time for the flow of fluid over an infinite plate. The comparison of
Newtonian fluid with Casson fluid is shown in Fig. 8 and we note that by an extremely large value of
β, i.e. β → ∞, the graph of Casson fluid coincides with the graph of a Newtonian fluid. The units of
material constants in Figs. 2 to 8 are SI units.
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Figure 2: Eq. (15) presents the profile of velocities u1(y), u2(y), and u3(y) for various values of t and
u0 = 4, ν = 1.2,h = 0.1, β = 0.05,z = 0

Figure 3: Eq. (15) presents the velocity profiles of u1(y), u2(y) and u3(y) for various values of h and
u0 = 4, ν = 1.2, t = 0.22s, β = 0.05, z = 0

Figure 4: Eq. (15) presents the profiles of velocity u1(y), u2(y) and u3(y) for various values of β and
u0 = 3,ν = 0.002,t = 0.005s,h = 0.03,z = 0
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Figure 5: Eq. (15) presents the profiles of velocity us(y, 0, t), −Curves u1(y), u2(y), u3(y) and Eq. (16)
present the graph of uC(y, t) − curves u1C(y), u2C(y) and u3C(y)

Figure 6: Eq. (16) presents the profile of velocities uC(y, 0, t) − Curves u1C(y), u2C(y) and u3C(y) for
u0 = 4, ν = 2.5, t = 0.003 and z = 0

Figure 7: Eq. (16) presents the profile of velocities uC(y, 0, t)− Curves u1C(y), u2C(y) and u3C(y) for
u0 = 4, ν = 1.5, β = 0.111 and z = 0
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Figure 8: The comparison of velocities uC(y) and uN (y), given by Eqs. (16) and (17) for u0 = 4, t = 0.002,
ν = 2.5, β = 50 and z = 0

6 Conclusion

Unsteady flow of a Casson fluid between two side walls of an infinite plate is examined. The plate provides
an impulsive motion to the fluid. The plate applies an impulsive motion to the fluid. The general form of
the exact solutions are determined with the help of integral transforms. The obtained solution satisfy all
the imposed initial and boundary conditions. The Newtonian solutions are determined as limiting cases
of the general solutions. Furthermore, they can also be used to give the solutions owing to the flow of
fluid over an infinite plate that exerts the same impulsive motion to the fluid and various known solutions
from the literature are obtained as limiting cases of our solutions. The results are plotted and it is found
that velocity is the decreasing function of the Casson parameter.
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Appendix A
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