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A steady, incompressible, and thermo-convective flow of micro-polar
fluid over a stretching permeable sheet with heat and mass transfer un-
der effects of radiation, Soret, Schmidt, and Dufour numbers have been
analyzed. The modeled governing equations, of the classical Navier-
Stokes, are coupled with micro rotation, temperature, and concentra-
tion equations, in the form of Partial Differential Equations (PDE’s),
along with initial and boundary conditions, are transformed into a sys-
tem of nonlinear coupled Ordinary Differential Equations (ODE’s) by
using an appropriate transformation. The numerical solution is ob-
tained by using the Parametric Continuation Method (PCM). For the
validity of the scheme, the results are compared with a numerical pack-
age bvp4c. It has been observed that both the results are in the best
agreement with each other. The effects of associated parameters on the
dimensionless velocity, micro-rotation, temperature, and concentration
profiles are discussed and depicted graphically. It has been detected
that the permeability parameter gives rise to the micro-rotation profile.

1 Introduction

The transfer of heat along the thin film flow of micro-polar fluid has a great impact on research in the
field of electronics and especially the exchange of heat inside the circuits of electronic devices, due to
uncountable applications described in [1-3]. To maximize and improve the allowance of heat transfer
of patterns flow, extension in the surface flow has been highly effective. In industries like automobiles,
fabrics, and heavy machinery, in all such areas heat transfer has great importance also in the designing
of manufacturing equipment, jets, army emanations, spaceships, turbines of different power plants, and
nuclear reactors are the phenomena of heat exchange. Examining the impacts of radiation on the bound-
ary layer of fluids is not an easy job to deal. The phenomenon of heat transfer was explained by Cengel
[4], in the encyclopaedia of energy engineering and technology. The behaviour of the transfer of heat and
flow of the fluids on Sinusoidal-Corrugated channels are numerically investigated by Khoshvaght-Aliabadi
[5]. The Micro-polar fluids were first introduced by Eringen [6], who explains the micro-rotation effects
on the micro-structures because the theory presented by Navier and Stokes does not explain, precisely
the properties associated with polymeric fluids, colloidal fluids, suspension, and solutions, liquids con-
taining crystals and fluids with additives. Eringen [7] further explained the thermo-micropolar fluids,
with the behaviour of micro-structures on the film flow of fluids. Stokes [8] presented a theory of Fluids
with Micro-structures. Researchers are studying the effects of radiations on the boundary layer of fluids
over plates, radiations on conducting micropolar fluid over uniform and stretched surfaces have been
explained by A.Eldahab [9]. The radiations on stretching plates with varying viscosity have been studied
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by A.Eldahab and E.Gendy [10]. Micropolar fluids with heat transfer through a porous medium in the
presence of radiations were discussed by A.Eldahab [11]. The micropolar fluid flow upon consistently
moving plate along with radiations was analyzed by Raptis.A [12]. The transfer of heat of a micro-polar
fluid along with radiations was explained by Raptis. A et al. [13]. The flow model of a micropolar fluid
over a permeable medium has vast applications, alloys, fabrics, untreated wood, rocks, porous polymers,
and blends of polymers. The effects of viscous resistance on the boundary of the flow, with inertia force
and heat transfer in a constant porosity, were examined by Reddy. Ramakrishna and Raju [14]. A. Raptis
[15] studied boundary layer flow through an absorbent medium. A. Eldahab and E.Gendy [16] explain
heat transfer through convection with a magnetic field. Ariman et al. [17]. Ahmadi [18] gives solutions
of a micropolar fluid passing over a partially unbounded plate along with the effects of micro-inertia.
Soundalgekar et al [19] explain the stream and exchange of temperature over a ceaselessly moving plate.
Gorla [20] investigated, steady heat transfer in the micropolar fluid using similarity techniques. The
convection flow of micro-polar fluid on a perpendicular plate was studied by Rees and Pop [21]. Kim [22]
discussed the unsteady flow with free convection on perpendicular plates upon the absorbent medium.
Singh [23] explained the same work using the finite difference method.

Nomenclature

Description Symbols Description Symbols
The micro-rotation constant G1 Free stream velocity U
concentration on surface C∞ Wall temperature field Tw

Temperature field T Forchheimer inertia Cr

Wall concentration field Cw Concentration field C
Coupling constant kc Fluid thermal diffusivity k

Temperature on surface T∞ Stretching velocity U0

Thermal radiation parameter R Specific heat at constant pressure cp
concentration susceptibility cs Thermal diffusion ratio KT

Concentration molecular diffusion Dm Fluid’s mean temperature Tm
Scaled boundary layer coordinate η Fluid density ρ
Angular velocity of fluid particles σ uniform thickness of boundary layer ϕ, δ

Kinematic viscosity υ Dynamic viscosity µ
Porosity parameters δ - -

We know that, the modeling of natural phenomena leads to a partial differential equation which is a highly
non-linear system, it is obvious that solving linear problems by analytic approach is not an easy job. As
there are perturbation techniques discussed and explained in [24, 25] used in different areas but still it
is difficult to apply them to every non-linear problem because it depends on some parameters which are
not present in every problem, so some methods which are other than perturbative techniques are small
parameter method [26], the delta expansion method [27], Adomian decomposition method (ADM) [28],
have been developed but it cannot give us the rate of convergence and region of solution in an easy way.
Liao [29-32], in 1992 gives the idea of an analytic method namely the homotopy analysis method (HAM),
for the solution of non-linear problems, HAM gives quick convergence and accuracy as compared to the
above methods. Mitri Prashant G and Tawade [33] used several geometries to explain the flow. Khan
et al. [34] also described the impacts of different variables on the flow of micro-polar fluid. Mahmood,
Tahir, and Nargis [35] analyzed the impacts of different variables on the flow of several fluids in their thin
film flow. Rashidi, MM, and Mohimanian Pour, presented an analytical solution by using the DTM-Pade
technique of micro-polar fluid through permeable media with the effects of radiations [36]. Rashidi.MM et
al. [37] also handled expository surmised solutions to the exchange of heat in the micropolar liquid inside
a penetrable medium along radiation impacts. Turkyilmazoglu [38] discussed micropolar fluid flow upon
the permeable shrinking sheet. Abdul Gaffar et al. [39] give an idea of convective flow and temperature
with non-linearity. Ibrahim et al. [40] discussed the micropolar and nanofluids with slip conditions along
with the Soret and Dufour effects. In our study, we supposed the heat exchange in a micro-polar fluid
with the impacts of radiation in a penetrable medium. Our manuscript consists of coupled energy and
concentration equations. The system has been transferred to a system of ordinary differential equations
once, and then these have been solved by numerical techniques. For this purpose, the modelled equations
are tackled numerically by using two different numerical techniques, the predictor-corrector method and
the bvp4c method. The obtained conclusions are compared and discussed with the help of graphs, which
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shows reasonable settlement with each other.

2 Mathematical Modelling

Let’s consider the steady film flow of viscous and incompressible micro-polar fluid flow which is being
stretched with a velocity U0=bx, is a constant and x where the rate of stretching is denoted

Figure 1: Geometry of the flow

by b> 0, display the direction of the linear veloc-
ity by which the plate is being stretched. Let δ,
be the thickness and is chosen to be uniform. The
medium is permeable in the semi-infinite horizon-
tal plate in the region y> 0 as shown in figure (1).
The temperature τ= (τw − τ∞) + τ∞ and concen-
tration C= (Cw−C∞)+C∞, varies apart from the
surface of the plate. τw and Cw is the temperature
and concentration of the plate, τ∞ and C∞ is the
temperature and concentration of the surrounding
respectively. Moreover, it is assumed that the flow
is gripping and radiative. The thermal radiations
are considered besides x-coordinate, and no radia-
tions along y direction, the required equations for
the flow of the problem are as follows:

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
=ν

∂2u

∂2y
+ kc

∂σ
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+
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K
(U − u) + Crϕ(U

2 − u2), (2)

G1
∂2σ

∂2y
− 2σ − ∂u
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∂τ
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k

ρcp

∂2τ

∂2y
+

16σ∗

3ρcpk∗
∂2τ

∂2y
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u
∂C
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+ v

∂C

∂y
=Dm

∂2C

∂2y
+
DmkT
Tm

∂2τ

∂2y
, (5)

boundary conditions for the two dimensional flow is given as:

u=U0, v= 0, σ= 0, τ=τw, C=Cw, at y= 0.
uy=σy=τy=Cy= 0, v=δx at y=δ.

 . (6)

here the term associated with thermal radiation is defined as:

qr=
4σ∗

3K∗
∂τ4

∂y
, (7)

where K∗ and σ∗ is the coefficient of mean absorption and Stefan Boltzmann constant respectively.
Ignoring the second and higher terms in Taylor’s series we supposed only the term τ4 in Taylor’s series
about τ1, which represents temperature of free surface, we get:

τ4≃4τ31 τ
∗ − 3τ41 , (8)

by using Eqs. (7) and (8), Eq. (4) becomes,

u
∂τ

∂x
+ v

∂τ

∂y
=

k

ρcp

∂2τ

∂2y
+

16σ∗τ31
3ρcpk∗

∂2τ

∂2y
+
νDmkT
Tmcscp

∂2C

∂2y
. (9)

The corresponding similarity transformations are:

ψ(x, y) = (2νU0x)
1
2 f(η), u=ψy, v=− ψx, σ= (

U0

2νx
)

1
2U0g(η) and η= (

U0

2νx
)

1
2 y. (10)
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Also the temperature and concentration for the thin film flow are

θ(η) = (
τ − τ∞
τw − τ∞

) and φ(η) = (
C − C∞

Cw − C∞
). (11)

Putting Eq.(10) and Eq.(11) into Eqs.(1)-(6). The following system of ordinary differential equations will
be obtained, by using similarity transformation:

f
′′′

+∆g
′
+ ff

′′
+

1

M
(1− f

′
) +N(1− f

′2
) = 0, (12)

Grg
′′
− 2(2g + f

′′
) = 0, (13)

(3R+ 4)θ
′′
+ 3RPr(Duϕ

′′
+ fθ

′
) = 0, (14)

ϕ
′′
+ Srθ

′′
− Scfϕ

′
= 0. (15)

The changed boundary conditions are as follows:

f(0) = 1, g(0) = 1, f
′
(0) = 1, θ(0) = 1, ϕ(0) = 1 at y= 0

f
′′
(1) =f(1) =g

′
(1) =θ

′
(1) =ϕ

′
(1) = 0 at y= 1.

}
. (16)

Where f and g are the dimensionless velocity and micro rotation angular velocity functions , θ and φ
are temperature and concentration functions, ∆=k1

ν is the vortex viscosity parameter, Mr= Ka
2φν is the

permeability parameter, Nr= 2φCru0

a is the inertia coefficient parameter,Gr=G1a
ν denotes micro rotation

parameter, Pr=
ρνc p

k denotes Prandtl number, R=
4σ∗τ3

1

K∗ denotes radiations parameter, Sc= ν
Dm

denotes

schmidt number, Sr=DmKT (Tw−T0)
νTm(Cw−C0)

denotes soret number andDf=
DmKT (Cw−C0)
νTm(Tw−T0)

denotes dufour number.

The quantities, local skin friction coefficient, the local Nusselt number, which is the non dimensional
rate of heat transfer and the mass transfer rate is called local Sherwood number, these quantities have
physical interpretation which are defined as:

Cf=
τsw
ρu2w

, Nux=
xqw

K(τw − τ∞)
, Shx=

xqm
Dm(Cw − C∞)

. (17)

where τsw, qw and qm are the shear stress along the walls, the heat fluctuation and the mass fluctuation
at the boundary, which is given by

τsw=µ

(
∂u

∂y

)y=0

, qw=−
(
K
∂τ

∂y

)y=0

, qm=−
(
Dm

∂C

∂y

)y=0

. (18)

With µ being the dynamic viscosity, then from Eqs.(7) and (18) into Eq.(17), we get

Cf

√
Rex=− f

′′
(0),

Nux√
Rex

=− θ
′
(0),

Shx√
Rex

=− ϕ
′
(0). (19)

Here, Re=U0x
ν is Reynold’s number. the values of the above parameters of physical interest, for all the

embedded parameters, are represented in Table 1.

Table 1: Values of Cf , Nux and Shx

∆ Mr Nr R Pr Sc Sr Du

0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3
0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3

3 Results and Discussion

The thin film, stream of micro-polar fluid in permeable medium along the effects of coupled temperature
and concentration fields, with extending lower plate is explored. The system of Equations (12-15) with
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Table 2: Comparison of present result with Refs. [10,11,14] where r= 0.2, ϕ= 0, ρs= 1, ρf= 1, (Cp)s= 1,
(Cp)f= 1, Knf= 1, Kf= 1, A=ζ= 0, ξ= 0, ϵ= 0

Author f ′(0) −g′(0) −h′(∞) −θ(0)
Present 0.5170 0.6221 0.8889 0.4003

Andersson [38] 0.510 0.616 0.883 -
Ming [39] 0.51021 0.61591 0.88230 0.39632

Xun et al. [17] 0.510231 0.615921 - 0.396271
Hayat et al. [40] 0.5109 0.61598 - 0.3959

corresponding boundary condition Equation (16) are tackled numerically, i.e. Predictor corrector tech-
nique and bvp4c technique, for comparison of substantial parameters, like ∆, R, Mr, Nr, Gr,Pr, Sc, Sr
and Du.
The physical parameters impeded in our model are explained. The numerical techniques presents best re-
semblance. The conduct of implanted parameters on capacities like velocity, temperature, micro-rotation
field and concentration areas are watched and dissected through graphs, Figure (2-5). Figure (1) shows
the geometrical layout of the problem. In figure 2(a) the act upon of ∆ on dimensionless velocity f(η)
is represented, clearly ∆ is inversely related with viscosity, for greater values of ∆ the thickness decays,
as a result the velocity of liquid increments. The impact of permeability Mr on the f(η) is depicted
in Figure 2(b). As we know that the greater values for Mr leads to highly porous medium, so it will
obviously decelerates the fluid flow as a result reduction in the velocity occurs. The influence of inertia
coefficient parameter Nr is shown in Figure 2(c). As Nr is directly proportional to the velocity, so
clearly by expanding values of Nr the velocity increments. The comparison of solutions obtained for the
velocity profile f(η), which shows best agreement as depicted in Figure 2(d). As Figure 3(a) displays
the micro-rotation profile rises, by increasing values of Gr, micro-rotation parameter. As we have inverse
relation of Gr with viscosity, for larger values of Gr, viscosity lowers as a result the velocity of the fluid
enhances. Figure 3(b) shows the change of the inertia parameter Nr on micro-rotation profile g(η), for
larger values of Nr, g(η) reduces. The effects of the permeability parameter on non-dimensional micro-
rotation profile g(η) are shown in Figure 3(c), as the permeability parameter and viscosity of the fluid, is
in inverse relation, so by increasing values of permeability parameter viscosity decreases as a result g(η)
increases. The comparison of solutions obtained for g(η), shows the best fit as shown in Figure 3(d). It
has been observed that temperature profile θ(η) declines for bigger values of radiation parameter R as
shown in Figure 4(a), because the enhancement in radiations, drops the temperature θ(η) of the fluid.
Figure 4(b) expresses the comparison of temperature profile θ(η) with the Prandtl number Pr, it shows
a resemblance as a radiation parameter. The enrichment in Pr leads to a decrease in θ(η). From figure
4(c) it is clear that for lager values of Schmidt number Sc, θ(η) reduces, because the thickness in the
boundary layer reduces. It is clear from Figure 4(d) that the temperature of the liquid diminishes for
more prominent vales of Soret number Sr, is the proportion of temperature contrast and concentration
contrast. Hence, the increase in the Soret number stands for an increase in θ(η). Figure 4(e) demonstrates
that with the increment in Dufour number Du, the temperature increases because specific heat increases
as the thermal diffusion decreases. Both the solutions obtained for temperature profile θ(η) show the best
correspondence as shown in Figure 4(f). The impact of Sr on concentration distribution ϕ(η) is shown in
Figure 5(a), for greater values of Sr, the viscosity enhances as a result ϕ(η) rises. Figure 5(b) represents
the impact of Schmidt number Sc on concentration profile ϕ(η), which shows that the variation in Sc
enhances the concentration distribution, because the soret number is directly proportional to viscosity. It
can be watched from Figure 5(c) that the non-dimensional concentration profile of the liquid rises with an
increment of Dufour number Du, which is the commitment of the concentration angle to the warm angle.
The numerical solution for the concentration profile ϕ(η) shows the best agreement as demonstrated in
Figure 5(d).
Table (1) shows the effects of radiations ∆, Prandtl number Pr, permeability Mr, inertia coefficient
parameter Nr, Schmidt number Sc, Soret number Sr and Dufour number Du on the skin contact Cf ,
Nusselt number Nu and Sherwood number Sh. It is seen from this table that the skin friction rate
declines with increment in permeability parameter Mr. With the expanding values of Pr and radiation
parameter ∆ the of rate of heat transfer also increases. The rate of mass exchange increments with the
increment of Schmidt number Sc and diminishes with Soret number Sr. Essentially with the expanding
values of Dufour number Du the rate of mass exchange increases.
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Table 3: Numerical values of radial and tangential skin frictions, axial inflow, Nusselt number and
magnetic skin depth for different values of the physical parameters

n f ′(0) −g′(0) −h′(∞) −θ′(0) −m′(0)
(a) For ζ = 0.5,
ξ = 1, α = 1.2,
Rem = 10, n =
1.5, Pr = 6.7,
Re = 0.9, ϵ = 0.3,
R = 0.4, R3 =
0.7.
A
0.0 0.4448 0.6645 0.9612 0.7304 1.6101
0.5 -0.1153 1.0251 1.2959 1.0766 2.1755
0.0 -0.7976 1.2997 1.6234 1.2517 2.4390
(b) For A = 0.09, ξ = 1,
α = 1.2, Rem = 10, n =
1.5, Pr = 6.7, Re = 0.9,
ϵ = 0.3, R = 0.4, R3 =
0.7.
ζ
0.0 0.3922 0.7961 0.9403 0.9637 2.1024
0.5 0.3533 0.7369 1.0155 0.8117 1.7486
0.0 0.3167 0.6869 1.0949 0.6902 1.4841
(c) For A = 0.09,
ξ = 1, α = 1.2,
Rem = 10, n =
1.5, Pr = 6.7,
Re = 0.9, ϵ = 0.3,
R = 0.4, ζ = 0.5.
R3

0.0 0.3807 0.6412 1.0343 0.8252 1.7857
0.5 0.3667 0.6899 1.0248 0.8183 1.7669
0.0 0.3248 0.8375 0.9951 0.7971 1.7090
(d) For A = 0.09,
ξ = 1, α = 1.2,
R3 = 0.7, n = 1.5,
Pr = 6.7, Re =
0.9, ϵ = 0.3, R =
0.4, ζ = 0.5.
Rem
0.0 0.2602 0.8634 0.6957 0.7138 0.1010
0.5 0.2833 0.8352 0.8066 0.7433 0.3071
0.0 0.3005 0.8148 0.8801 0.7632 0.4831
(e) For A = 0.09,
ξ = 1, α = 1.2,
R3 = 0.7, Rem =
10, Pr = 6.7,
Re = 0.9, ϵ = 0.3,
R = 0.4, ζ = 0.5.
n
0.0 0.3800 0.7722 0.9562 0.8622 1.8771
0.5 0.3650 0.7522 0.9888 0.8338 1.8046
0.0 0.3576 0.7426 1.0054 0.8199 1.7694
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(a) (b)

(c) (d)

Figure 2: From (a)-(c), show the impact of ∆, Mr and Nr on non-dimensional velocity field f ′(η). (d).
Comparison of solution obtained by PCM and bvp4c method. When ∆= 0.3, R = 3.0, Mr = 10.2,
Nr = 0.10

(a) (b)

(c) (d)

Figure 3: From (a)-(c), show the Micro rotation profile of g(η) under the effect of Nr, Gr and Pm.
(d). Comparison of solution obtained by PCM and bvp4c method. When ∆= 0.3, R = 3.0, Mr = 10.2,
Nr = 0.10, Gr = 1.0, Pr = 6.4, Sr = 1.00, Sc = 10.9 and Du = 0.30
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(a) (b)

(c) (d)

(e) (f)

Figure 4: From (a)-(e), show the variation of dimensionless temperature profile of θ(η) under the effect
of Rd, Pr, Sc, Sr and Du. (f). Comparison of solution obtained by PCM and bvp4c method. When
∆= 0.3, R = 3.0, Mr = 10.2, Nr = 0.10,Gr = 1.0, Pr = 6.4, Sr = 1.00, Sc = 10.9 and Du = 0.30

(a) (b)

(c) (d)

Figure 5: (a)-(c) The effects of parameters Sc, Sr and Du on dimensional less concentration profile ϕ(η)
respectively. (d) Comparison of solution obtained by PCM and bvp4c method. When ∆ =0.3, R =3.0,
Mr = 10.2, Nr =0 .10, Gr =1.0, Pr =6.4, Sr =1.00, Sc =10.9 and Du =0.30
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4 Conclusion

We consider the stream of lean film, miniaturized scale polar liquid in permeable media past on moving
lower plate with warm radiations beneath the impact of Soret, Schmidt, and Dofour impacts have been
inspected. The system of non-linear coupled differential equations were solved through two numerical
methods, PCM and bvp4c which shows best agreements and validity of our model. The impacts of
imbedded parameters on the velocity, temperature, and concentration profiles are illustrated as well as
examined. On the premise of our outcomes the following conclusion can be drawn.

1. The speed of the liquid increments with the improvement in vortex thickness parameter.

2. Permeability parameter declines the fluid velocity.

3. The fluid temperature declines with the increase in radiation parameter and Prandtl number.

4. The temperature profile increments whereas the concentration profile diminishes with expanding
values of Schmidt number.

5. For three larger values of the radiation parameter and permeability parameter the coefficient of
skin friction increases.

6. Enhancement in temperature and concentration has been observed with the increase in Dufour
number.

7. The local mass exchange rate increment with the increments of the Schmidt number and Dufour
number, and diminishes with the increment of Soret number.
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