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A B S T R A C T 

The purpose of this article is to specify the passage and mathematical 

model of COVID-19. The infectious disease COVID-19 originated in China and 

has affected the whole world. In the present study, we have considered, the SEIR 

model to evaluate the spread of COVID-19 in Malaysia. In this article, we have 

explored the gesture of COVID-19 accurately by applying the newly advanced 

fractional operator of Atangana-Baleanu to the classical SEIR model. Based on 

(WHO) reported data in this study, we discussed the corona’s virus's behaviour 

in Malaysia. We have taken the available infection cases from 1st May 2020 to 

14th May 2020. We have matched our problem to Malaysia's actual data, which 

shows a firm agreement with the actual data. Based on data gathered by the 

World Health Organization (WHO), we have determined the basic reproduction 

number for the studied disease. Furthermore, we conducted a stability analysis 

for both the Disease Free Equilibrium (DFE) and the Endemic Equilibrium (EE) 

in order to understand the behavior of the model in terms of disease spread and 

persistence. The fractional model provided was solved through numerical 

methods using MATLAB software. We visually depicted and extensively 

discussed the impact of various parameters. Notably, our study projected the 

disease progression for the next 300 days through an approximation. 

1. Introduction  
There are many infectious diseases that affect humans as well as animals. HIV, hepatitis B and C, avian flu, malaria, 

Ebola virus, dengue virus, tuberculosis, chickenpox, diarrhoea, influenza, rubella illness, Pine wilt, Moko, orange rust, Karnal 

bunt, Dutchelm, and sugar cane, among others, are among the infectious diseases. [1]. It is imperative to study these infectious 

diseases and to find possible strategies to control them. During the study of these infectious diseases, one can see how these 

infections spread, and attention to the desirable feasible assets to identify these diseases to hamper them from spreading. 

http://www.cuijca.com/
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    Recently, an infectious disease has been observed, namely, the novel Coronavirus (COVID-19). The initial case 

of the novel coronavirus in a human was identified on 31st December 2019, in Wuhan, China. The Covid-19 symptoms were 

initially misdiagnosed as pneumonia. The infected individual did not recover after vaccination and pneumonia medication, 

and the medication was ineffective [2].  Experts then clarified that this isn't pneumonia. Second, it was discovered that the 

virus propagated quickly from humans to people in China. Moreover, the contaminated cases were not confined to Wuhan, 

China, but they expanded to other Chinese cities [3] and then to other parts of the world. It can be observed from the 

demeanour of coronavirus that it was initially treated as an epidemic disease. However, as the cases of Coronavirus 

disseminate worldwide, it was upgraded to a pandemic disease. Initially, it was observed that the Coronavirus symptoms in 

human beings take 2 to 10 days to appear.     

    COVID-19 initially affected China and then the entire world, spreading to Europe, Germany, Italy, and America, 

and causing various deaths. Thousands of people have died as a result of COVID-19. COVID-19 also affected Asian 

countries, especially Malaysia. In Malaysia, the first case of the Coronavirus was reported on 25th January 2020 [4].  From 

25th January 2020 to 14th May 2020, the statistics of cases show the escalation of Coronavirus rapidly. On the 14th of May 

2020, WHO data revealed that there were 6779 total infected cases, 111 total reported fatalities, and 5351 total recovered 

patients [5].  

    As the spread of COVID-19 is very dangerous and has affected many people from various areas of the world, it 

is a crucial task for experts to calculate the gestures and transmission of Corona. Recently, many researchers investigated the 

reasons and transmission of Corona using different mathematical models [6]. Backer et al. [7] studied the incubation span of 

Corona among travellers from Wuhan, China. Rothe et al. [8] calculated the transmission of COVID-19 in Germany. Al-

Tawfiq et al. [9] studied the effect of Coronavirus in the Middle East and calculated a case-control of COVID-19. Read et al. 

[10] investigated novel Coronavirus and estimated early epidemic parameters for the prediction of COVID-19. Jia et al. [11] 

studied the impact of the policy of interventions and also studied meteorological factors. Hellewell et al. [12] studied the 

control of COVID-19 by considering the case of isolation and contact. Imai et al. [I3] analysed the transmissibility of Corona. 

Chen et al. [14] investigated the similarity of COVID-19 and predicted the spread of Coronavirus. 

    Many researchers have reported different definitions of fractional parameters to investigate many physical 

phenomena. However, the dynamics and transmission of distinct infectious diseases, like the gesture of HIV investigated by 

[15], can be better described by the newly developed definition of the Atangana-Baleanu derivative. For example, chickenpox 

disease was studied by [16] using AB fractional derivative. Prakasha et al. [17] investigated hepatitis in their study. The 

mathematical model for the spread of dengue fever was developed by [18]. The AB time-fractional model for rubella disease 

was calculated by [19]. Sweilam et al. [20] investigated TB using the AB -fractional model and the effect of diabetes and 

resistant strains. AB time-fractional model applications are not limited to biological sciences, as they can be applied to various 

models of engineering. For example, Arif et al. [21] studied some engineering applications in CSF fluid flow using AB 

fractional model. Some nanofluid applications in couple stress fluid using the AB time-fractional model have been studied 

[22]. In another paper, Arif et al. [29, 30] discussed the comparison of various fractional operators with AB fractional 

operators and discussed some applications in the dynamics of the system.    
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     The goal of this study is to use the SEIR model to explore the evolution and dissemination of corona in Malaysia. 

We also used the Atangana-Baleanu time-fractional model to transform the classical model. The AB time-fractional 

derivative was chosen because it has a non-local kernel and is non-singular, which could help anticipate corona spread in 

Malaysia more accurately. Additionally, we used corona data from May 1 to 14, 2020 to specify the supplied model to the 

real data in this study. The supplied model's positivity and invariance are also addressed in depth. The basic reproduction 

number and fixed points are anticipated. For the presented model, stability analysis and a few primitive properties have been 

proven. For the specified fractional dilemma, a numerical technique is built, and the results for the fractional parameter are 

graphed. For global asymptotical stability, a few graphs are displayed with varied initial conditions. 

2. Mathematical Modelling 
            In this model, the spread of corona in humans has been discussed. Here ( )pN t  stands for the total population, which 

is divided into four sub-classes namely susceptible, exposed, infected, and recovered individuals represented by  

( ), ( ),p pS t E t  ( ) and ( )p pI t R t  respectively. The flow chart given below shows the interaction of these subclasses. 

 Figure 1: SEIR model Flow chart.     

 In this model, p  is stand for the rate of recruitment of the susceptible population, which identify the birth rate,   

p  represents each subclass death rate, p  shows the rate of interaction between infected and susceptible population with 

the transmit 
p p pS I

N


, the pace at which the exposed class finished their incubation time and joined the infected class is 

denoted by p , p  and is the recovery rate of the infected population. 

   

   

, ,

, ,

p p p p p p p p

p p p p p p p

p p

p p p p p p p p p p

dS t S I dE t S I
S E E

dt N dt N

dI t dR t
E I I I R

dt dt

 
  

    


       





    


.   (1) 

Corresponding initial conditions: 
*(0) 0S S   , 

*(0) 0E E   , 
*(0) 0I I   and 

*(0) 0.R R      (2) 

3. Boundedness and Non-negativity of the Model 
This section is included to demonstrate the boundedness and non-Negativity of the system's solutions (1). The 

following lemma is used to demonstrate the model's positivity. 

Lemma 3.1. Suppose 
n   is open,  , , 1, 2,3,..., .ig i n    if

0
( ) 0,

0n

i
i x t X

g
 

 
 ,

 1 2, ,..., , 1, 2,...,
T

t t t ntX x x x i n   then      0 1 2 0, ,..., : ,0 ,n n

n          is the invariant domain 

of the below equations. 
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 
 , , , 1,2,..., .

i

i t

dx t
g t X t i n

dt
          (3) 

Where, 

  0 1 2, ,..., : 0, 1, 2,..., .n

n ix x x x i n          (4) 

Preposition 3.1. The system (1) is invariant in 
4

  

Proof: From system (1), we get: 

   0, (0) 0,
dX

M X t X X
dt

           (5) 

          1 2 3 4( ) , , , ,
T

M X t M X M X M X M X      (6) 

We noted that: 

   

   

0 0

0 0

0, 0,

.

0, 0

p p

p p

p p p p p

p

p p pS E

p p

p p p p

I R

dS t dE t S I

dt dt S I R

dI t dR t
E I

dt dt



 

 

 


     

  



    


   (7) 

In the light of Lemma 3.1, 
4

  is invariant set. 

Preposition 3.2. The system (1) is bounded in the region: 

             4, , , : ( ) .
p

p p p p p

p

S t E t I t R t N t


  
    

  

 

Proof: The sum of the equations mentioned in system (1), we can verified the Boundedness of the problem (1): 

( )
,

p

p p p

dN t
N

dt
    with 0(0) 0.pN N         (8) 

The solution of equation (8) becomes: 

   0 1 .p pt tp

p

p

N t N e e
 



 
           (9) 

From equation (9), we can observed that, if t  , ( )
p

p

p

N t



  then   , which specify the achievable area for the           

problem as follows:      

          4, , , : ( )
p

p p p p p

p

S t E t I t R t N t


  
    

  

.                  (10) 

This solution shows the boundedness of the system (1). 

4. Points of Equilibrium, Analysis of Local Stability and Basic Reproduction Number  

This part comprises the model's possible fixed points (1). Disease Free Equilibrium (DFE) and Endemic Equilibrium 

(EE) are two alternative equilibrium points that can be determined (EE). Moreover, the next-generation technique calculates 

basic reproduction numbers and discusses the local stable analysis of these points of equilibrium. The model's steady-state 

solution is presented below, where the rate of change with function of time equals zero. 
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       
0,

p p p pdS dE dI dR

d d d d

   

   




    



.      (11) 

Using equation (11), model (1) becomes: 

0 ,

0 , ,

0 ,

0 ,

p p p

p p p

p p p

p p p p

p p p p p p

p p p p

S I
S

N

S I
E E

N

E I I

I R





 

  

 


    



   


  


 


        (12) 

From the steady state system (12), DFE can be determined by letting 0p p pE I R     and is considered by: 

 0 0 0 0, , , ,0,0,0 .
p

DFE

p

S E I R


 
     

 

       (13) 

 
Figure 2. Two weeks (1st May 2020 to 14th May 2020) report of WHO for COVID-19 deaths. 

    Similarly, the model (1) of EE is determined from the system (12) and represented  * * * *, , ,EE S E I R  . Where, 

 
 

 
  

  
  

  
 

2

* *

2 2

* *

2 2

, ,

,

p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p

S E

I R

            

                    

                   

                 

      
 

        

         
 

       
,

p p p p p p p     








   

.  (14) 

The basic reproduction number  0  is determined by using the next-generation approach [23]. The matrices for F  

and V  at (DFE) 
0

 are: 

0

0 0

p
F

 
  
 

 and 
0p p p

p p p

V
 

  

 
  

 
.       (15) 
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From reference [23],  0  is equal to  1
FV


 , where  1

FV


 is the spectral radius, which is determined as: 

  0 .
p p

p p p p

 

   
 

 
         (16) 

Theorem 4.1. The DFE 
0

 of the system (1) is locally asymptotically stable if 0 1   . 

Proof: The Jacobian matrix under DFE of the system (1): 

0

0 0

0 0
.

0 0

0 0

p p

p p

p p p

p p

J

 

  

  

 



  
 

 
 
  
 

  

       (17) 

Suppose   denotes the eigenvalues of the Jacobian matrix 0J


. Where, the two eigenvalues of the above-

mentioned matrix are not positive, i.e. two time p . The following characteristic equation can obtain the remaining 

required eigenvalues: 
2

1 2 0,               (18) 

where,  

1 2 ,p p p                (19) 

   

2

2

2 01 ,

p p p p p p

p p p p

       

    

   

    
        (20) 

From equation (16), it can be noticed that 1 0  . Similarly, from equation (17), it can be seen that 2 0   when 

0 1  . Hence, the characteristics equation contain all the coefficients in non-negative form. Furthermore, the eigenvalues 

of the aforementioned characteristics equation are negative due to Rough-Hurtwiz criterion. Thus, all the eigenvalues of the 

Jacobian matrix (15) are negative for 0 1  . Accordingly the model mentioned in Eq.  (1) is stable locally asymptotically 

when 0 1  . 

5. Fractional Model and Numerical Scheme 

5.1 Preliminaries 

Definition: The Atangana-Baleanu fractional derivative is defined [24].        (16)

 

 
 '( )

( ) , for 0 1.
1 1

AB

a a

a

t
f t E f dt







 
 

 

  
   

  
 

D       (21) 

Here, (.)E  represent Mittage-Leffler function and ( )  stand for normalization function [25]. 

        Definition: For the determination of the fractional order ODE the numerical technique is mentioned in [26]: By 
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considering a non-linear fractional ODE: 

  0( ) , ( )   with  (0) .AB y t f t y t y y

  D         (22) 

The numerical scheme for equation (22) is given by [Toufik and Atangana (2017)]: 

  

  
        

  
      

1 0

0 11 1

1
,

( )

,
1 2 2 2

( 2)
.

( ) ,
1 1

( 2)

n n n

k k

n

k k k

y y f t y t

h f t y t
n k n k n k n k

h f t y t
n k n k n k


 


 





 









  


 



 
          

  
 
        
   


   (23) 

5.2 Fractional Model 

We substitute the classical time derivative with the AB time fractional derivative in order to generalize fractional 

model (1), and we get: 

   

   

0 0

0 0

, ,
.

, ,

p p p p p pAB AB

t p p p p t p p p p p

AB AB

t p p p p p p p t p p p p p

S I S I
S t S E t E E

N N

I t E I I R t I R

 

 

 
  

    


       


     

D D

D D

   (24) 

Here,  is the fractional parameter and  0 .AB

t


D  is the AB time fractional derivative. These initial conditions and 

variables for the model (21) are positive. 

5.3 Numerical Scheme 

By applying the process mentioned in reference [26] on the model (21), we obtained the below form: 

       

       
0 1 0 2

0 3 0 4

, , , , , , , , , ,
.

, , , , , , , , , ,

AB AB

t p p p p p t p p p p p

AB AB

t p p p p p t p p p p p

S t t S E I R E t t S E I R

I t t S E I R R t t S E I R

 

 

 

 

  


  

D D

D D
   (25) 

Furthermore, system (22) becomes: 

        
1

1 1

0

1
0 , , , , , , , , ,

( ) ( ) ( )

t

p p p p p p p p p pS t S t S E I R S E I R t d
 

    
  


   

       (26) 

        
1

2 2

0

1
0 , , , , , , , , ,

( ) ( ) ( )

t

p p p p p p p p p pE t E t S E I R S E I R t d
 

    
  


   

       (27) 

        
1

3 3

0

1
0 , , , , , , , , ,

( ) ( ) ( )
p p p p p p p p p pI t I t S E I R S E I R t d


 

    
  


   

       (28) 

        
1

4 4

0

1
0 , , , , , , , , .

( ) ( ) ( )
p p p p p p p p p pR t R t S E I R S E I R t d


 

    
  


   

       (29) 



             Arif et al  

 

38 

 

By putting 1nt t  , in equations 26-29 and using 1,2,...n  , we obtained: 
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Assuming the interval  1,m mt t  and applying the method of two-step Lagrange polynomial interpolation, equations 

(30)-(33) take place as under: 
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Where, the step size is l . 

  

Figure 3. Comparison between disclosed deaths and recovered patients of COVID-19 in Malaysia and results are shown in 

the bar chart and line plot. 

Equations (34)-(37) take on the following iterative structure when the integration terms in the aforementioned 

equations are solved: 
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6. Data Fitting and Numerical Results 

6.1 Data Fitting 

We based our model solutions on real data received from WHO for Malaysia between May 1st and May 14th, 2020 

[5]. Malaysia's total population for the year 2020 is 32,337,727 [27], according to stated data. We used (0) 32337727N 

for the initial values, with the exposed and infected persons being (0) 10, 000E p   and (0) 6819I p   respectively. We 
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have combined the removed and recovered population in ( )R tp , so, (0) dead+recovered 112 5439 5551Rp     . The 

remaining population is treated as susceptible persons, so, (0) 32315285S p  . For 1  , the mentioned model is fitted. 

The calculated reproduction number 1.79851
0

  , for calculation we use different valves from table 1. 

 

 

Figure 4. The comparison of real data versus model fitting data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Estimated and Fitted Values for Different Parameters of Model 1. 

 

 

 

 

Parameter Description Value Source 

p  Birth rate 431,745.3538 Estimated 

p  Natural Mortality rate 1/74.9 per 1000 people [28] 

p  Contact rate 0.195 Fitted 

p  Incubation period 0.145 Fitted 

p  Recovery rate 0.09744 Fitted 
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Figure 5. The passage and transmission of COVID-19 for various values of the fractional parameter   in different classes. 

 

 

6.2 Numerical Results 

The present section gives us graphical observations of the given model. Figure 1 represents the flow chart of the 

considered problem. To calculate the dynamics and transmission of COVIDS-19, we have considered the data collected by 

WHO from 1st May 2020 to 14th May 2020. In this interval, the spread of COVID-19 in Malaysia shows that the coronavirus 

spread at a high rate. Fig. 2 displays the number of deaths for COVID-19 in Malaysia using the time interval from 1st May 

2020 to 14th May 2020. Fig. 3 highlights the comparative bar chart and line plot of described deaths and recovered persons 

of COVID-19 from 1st May 2020 to 14th May 2020. Fig. 4 depicts the comparison between the data of model and real data 

from WHO. 
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Figure 6. The gesture of COVID-19 in various initial conditions and classes. 

To acquire findings from the provided model, we used MATLAB programme to replicate the given iterative 

approach. For the current COVID-19 model, the time unit is measured in days. The behaviour of various values of fractional 

parameters on the dynamic and transportation of COVID-19 for various subclasses of the total population is highlighted in 

Fig. 5. By varying , various solutions of the given model are obtained. Furthermore, it can be seen from the graph that the 

gesture and transportation of COVID-19 have been predicted for the next 300 days. Finally, Fig. 6 is determined by taking 

the various initial values for endemic equilibrium's global asymptotical stability. 

7. Concluding Remarks 
For the behaviour and transmission of COVID-19, we used the SEIR model in this article. We have also established 

that the model in question is constrained and consistent. For the steady-state of the provided model, two equilibrium points, 

DFE and EE, are estimated. Moreover, 
0

 is computed by applying the technique of next-generation. We found that the 

proposed model is locally asymptotically stable when
0

1  using stability analysis. It means that by taking
0

1  the 

disease from the population is dying out and the total population approaches to DFE. 

We have also used the recently discovered AB fractional model to the classic SEIR model, which has been 
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generalised. The actual data have been fitted for the classical model i.e. 1  . We have chosen the value of 0 1.79851  , 

from the fitted values mentioned in table 1. For the results of the AB fractional model, a numerical approach is used. Various 

graphical results have been achieved after the computation of the numerical technique. 

Moreover, we have forecasted the evolution and transmission of COVID-19 over the upcoming 300 days. The advantage of 

employing the AB fractional model lies in its capacity to yield multiple solutions. Through manipulation of the fractional 

parameter, researchers can align their empirical findings with our derived solutions, facilitating comparisons. Given that the 

management of infectious diseases remains a challenge both within Malaysia and globally, our findings offer insights. In the 

future, potential regulation strategies could involve integrating vaccination, quarantine, or a combination thereof into the 

existing model. This would enable us to showcase the influence of these interventions on the progression of this formidable 

infectious ailment. 
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