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A B S T R A C T 

In the current paper, we have studied fractional order differential equation 

containing Atangana-Baleanu fractional derivative in the sense of Caputo. We 

have studied the existence of the solution of the concerned problem with the help 

of using the tools of fixed point theory. Apart from this the authors have 

investigated the uniqueness of the solution as well. With all these we have also 

analysed the stability of the solution for which we have used the Ulam-Hyer’s  

and generalized Ulam stability. We have derived all the conditions for the 

aforementioned work. To validate the results we derived have been illustrated 

through the given examples. For the existence of the solution the authors have 

utilized Banach and Krasnoselskii’s theorems. 

1 Introduction  

The subject of Fractional Differential Equations (FDEs) is the main focus for researchers, due to its direct 

application in the diverts fields of science, such as thermodynamics, dynamics, bio -physics, memory effect, bio-

medical, electrostatics, computer networking, economics, signal processing, and control theory, (see [1-5]) in the 

references therein. Arbitrary order derivatives is more reliable, globally in nature and high degree of freedom as 

compared to conventional derivatives, (see [6-11]). The researchers used various tools of fixed point theory and 

non-linear analysis to develop the proposed solutions for FDEs and well explored the theory up -to large extend. In 

this regards many articles and books have been published by researchers, for detail study  we refer [12-15]. A type 

of FDEs in which the rate of change dependent on the previous time is known as Fractional Delay Differential 

Equations (FDDEs). The FDDEs provides unsurpassed techniques to modelling of natural phenomena. Proportional 

type delay DEs is one of the main type of DDEs, it has direct application natural problem, technological control, 
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dynamical system and their uses [16, 17]. The DDEs have gain the attention of researchers, because of its wide 

range applications in dynamical systems, thermodynamics, electro-dynamics, automatic control system, hydraulic 

network systems, economy, transmission lines, biology and other dynamical systems (see[18]). 

There are numerous types of Fractional Differential Operators (FDOs), which offer a wide select ion of 

dishes to researchers to pick the one, which will precisely describe the circumstance. The derivative with singular 

kernel are immensely used and investigated by several researchers, see [19-21]. Sometime the FDOs with singular 

kernel determine the dynamics with nonlocal conditions. To overcome this problem, researchers introduce new FDO 

with singular kernel. In 2016, Caputo and Fabrizo introduced fractional differential operator with exponential 

functions. In the successive years, Atangana and Baleanu generalized the said derivative by replacing the 

exponential function by Mittage-Leffler function in the concepts of Caputo, Riemann-Liouville and was name ABC 

and ABR-derivatives. These are reliable fractional differential operators, to explore well th e various real-world  

problems [22-28]. 

One of the salient feature of qualitative analysis of FDEs is stability analysis. Which play a foremost rule 

in the investigation of non-linear FDEs and is essential for the optimization and numerical point of view. It is an 

interesting area of research for the study of many engineering and physical problems. Although for differential, 

integral and functional equations, there are numerous types of stabilities discussed in the present literature, such as 

asymptotic stability, Exponential stability, Ullam-Hyers stability, Mittage-Leffler stability, Lyapunov stability [29-

32]. Ullam-Hyers (UH) is the most reliable stability among these. Which was introduced in 1941, after the famous 

correspondence among the Ullam [32] and Hyers [33]. Later on, which was further generalized by researchers to 

generalized UH (GUH), (see [34, 35]). In 1970, Rassias modified UH stability to a more general form known as 

Ullam-Hyers-Rassias (UHR) stability and generalized UHR (GUHR) stability, we refer [36] to the readers. FDEs in 

sense of singular fractional differential operators are well studied for the stability analysis and existence of solutions 

[37-41]. Motivated from the existence literature of aforementioned FDEs, we studied the concerned fractional DDEs  
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where  𝐴𝐵𝐶𝐷0
𝜂

 represent ABC derivative, a continuous function 𝑓: ℐ × 𝑅 × 𝑅 → 𝑅 and ℐ = [0, 𝑇]. Traditional 

class of proposed equations are well explored and furnished for existence of solutions and analysis regards to 

stability. In this manuscript, we studied the novel type of pantograph FDDEs in concepts of ABC arbitrary order 

derivative for existence theory and stability analysis. With the help of Kransnosilskii’s theorem and UH type 

stability, we discussed the conditions for the existence of solutions and results regards to stabilities. In order to 

justify the desired results, the author’s Stephen  some illustrative examples.  

2 Preliminaries  

This portion is committed to known results, lemmas and definitions that are needed for further correspondence in 

this manuscript. Let 𝒞[ℐ, 𝑅] be a Banach space with the norm define as ∥ 𝜗 ∥= max
𝑡∈ℐ

|𝜗(𝑡)|. The concerned space 

will be used onward.  

Definition 1 [22, 28]. Let 𝜗 ∈ 𝐻1(𝑎, 𝑏), 𝑎 < 𝑏 and 0, < 𝜂 < 1.  The arbitrary order ABC operator of 𝜗 with 

order 𝜂 in “Caputo” sense is given by  

   ABC
𝑎D𝑡

𝜂
𝜗(𝑡) =

𝔹(𝜂)

1−𝜂
∫

𝑡

𝑎
𝜗′(𝑠)E𝜂(

−𝜂(𝑡−𝑠)𝜂

1−𝜂
)𝑑𝑠.         (2) 

Similarly, “Riemann-Liouville” derivatives is define as  
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  𝐴𝐵𝑅
𝑎D𝑡

𝜂𝜗(𝑡) =
𝔹(𝜂)

1−𝜂

𝑑

𝑑𝑡
∫

𝑡

𝑎
𝜗(𝑠)E𝜂(

−𝜂(𝑡−𝑠)𝜂

1−𝜂
)𝑑𝑠,                   (3)

  

where 𝔹(𝜂) > 0  is “normalization function with the property  𝔹(0) = 𝔹(1) = 1 and E𝜂 is the Mittag-Liffler 

function". 

Definition 2 [22, 28]. The η order AB fractional integral of ϑ is defined as 

 𝐴𝐵
𝑎I𝑡

𝜂𝜗(𝑡) =
1−𝜂

𝔹(𝜂)
𝜗(𝑡) +

𝜂

𝔹(𝜂)Γ(𝜂)
∫

𝑡

𝑎
𝜗(𝑠)(𝑡 − 𝑠)𝜂−1𝑑𝑠.       (4)  

Lemma 1 [22, 28].  “The AB fractional integral and ABC fractional derivative of order η ∈ (0,1] of the function 

ϑ, satisfy the following  

 𝐴𝐵
𝑎I𝑡

𝜂 ABC

𝑎
D𝑡

𝜂𝜗(𝑡) = 𝜗(𝑡) − 𝜗(𝑎)".   

Theorem 1 [42]. “ (Kransnosilskii’s fixed point theorem) If V is a non-empty closed and convex subset of X, with 

operators F, G such that 

 F𝜗1 + G𝜗2 ∈ 𝑉, ∀ 𝜗1, 𝜗2 ∈ 𝑉; 
 F is condensing operator; 

 G is compact and continues; 

then there exist at least one solution 𝜗 ∈ 𝑉 such that 

 F(𝜗) + G(𝜗) = 𝜗. 

3 Existence of  Theory 

In this section we analyze the existence of the problem (1). 

Lemma 2  If y ∈ 𝒞[ℐ, R], then integral representation for the problem 

       00
,0 1, I, 0

ABC

t y t tD

                        (5) 

is obtain in form of  

𝜗(𝑡) = 𝑤0 +
(1−𝜂)

𝔹(𝜂)
[𝑦(𝑡) − 𝑦0 ] +

𝜂

𝔹(𝜂)Γ(𝜂)
∫

𝑡

0
𝑦(𝑠)(𝑡 − 𝑠)𝜂−1𝑑𝑠.                        

Proof. By applying the  AB I0
η
  to the considered problem (5), we have 

𝜗(𝑡) = 𝑏0 +
(1−𝜂 )

𝔹(𝜂)
𝑦(𝑡) +

𝜂

𝔹(𝜂)Γ(𝜂)
∫

𝑡

0
𝑦(𝑠)(𝑡 − 𝑠)𝜂−1 𝑑𝑠[𝑟𝑔𝑏]0.00,0.00,1.00,             (6) 

using 𝑤(0) = 𝑤0 and 𝑦(0) = 𝑦0 in (6), we have  

𝑏0 = 𝑤0 −
(1 − 𝜂)

𝔹(𝜂)
𝑦0[𝑟𝑔𝑏]0.00,0.00,1.00, 

 by putting the value of 𝑏0 in (6), we get  
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𝜗(𝑡) = 𝜗0 +
(1 − 𝜂)

𝔹(𝜂)
[𝑦(𝑡) − 𝑦0] +

𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡

0
𝑦(𝑠)(𝑡 − 𝑠) 𝜂−1𝑑𝑠. 

Corollary 1. In the light of Lemma 2, the solution of the proposed problem (1) can be expressed as  

𝜗(𝑡) = 𝜗0 +
(1−𝜂)

𝔹(𝜂)
[𝑓(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡) − 𝑓0] +

𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡

0
𝑓(𝑠, 𝜗(𝑠), 𝜗(𝛿𝑠))(𝑡 − 𝑠)𝜂−1𝑑𝑠.  (7) 

Next, we are interesting in existence analysis of our proposed problem, consider the following operators  

𝐹𝑤(𝑡) = 𝜗0 +
(1 − 𝜂)

𝔹(𝜂)
(𝑓(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡) − 𝑓0), 

𝐺𝑤(𝑡) =
𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡

0

𝑓(𝑠,𝜗(𝑠),𝜗(𝛿𝑠))(𝑡 − 𝑠)𝜂−1 𝑑𝑠, 

𝐾𝑤(𝑡) = 𝐹𝑤(𝑡) + 𝐺(𝑡). 

Before the proof, some assumptions are needed to be hold.  

 There exist a positive constant 𝐿𝑓 such that for any 𝑢, 𝜗, 𝑢, 𝜗̅ ∈ ℐ, one have 

|𝑓(𝑡, 𝑢, 𝜗) − 𝑓(𝑡, 𝑢, 𝜗̅)| ≤ 𝐿𝑓{|𝑢 − 𝑢| + |𝜗 − 𝜗̅|}. 

 If ∃ positive constants 𝑙, 𝑚 and 𝑛, such that 
|𝑓(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡))| ≤ 𝑙 + 𝑚|𝜗(𝑡)| + 𝑛|𝜗(𝛿𝑡)|. 

Theorem 2.  If the assumption (A1 ) hold and 
2𝐿𝑓(𝛤(𝜂)+𝑇𝜂)

𝔹(𝜂)𝛤(𝜂)
< 1, then the propose problem (1) has unique 

solution. 

Proof. Consider 𝜗, 𝜗̅ ∈ 𝒞[ℐ, 𝑅], we have  

∥ 𝐾𝜗 − 𝐾�̅� ∥= 𝑚𝑎𝑥
𝑡∈ℐ

|𝐾𝜗(𝑡) − 𝐾�̅�(𝑡)| 

= 𝑚𝑎𝑥
𝑡∈ℐ

|[𝜗0 +
(1 − 𝜂)

𝔹(𝜂)
(𝑓(𝑡, 𝜗(𝑡),𝜗(𝛿𝑡) − 𝑓0 )] 

+
𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡

0

𝑓(𝑠, 𝜗(𝑠), 𝜗(𝛿𝑠))(𝑡 − 𝑠)𝜂−1𝑑𝑠] 

−[𝜗0 +
(1 − 𝜂)

𝔹(𝜂)
(𝑓(𝑡, �̅�(𝑡), �̅�(𝛿𝑡)) − 𝑓0 ) +

𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡

0

𝑓(𝑠, �̅�(𝑠), �̅�(𝛿𝑠))(𝑡 − 𝑠)𝜂−1𝑑𝑠]| 

≤ 𝑚𝑎𝑥
𝑡∈ℐ

[
(1 − 𝜂)

𝔹(𝜂)
|𝑓(𝑡, 𝜗(𝑡),𝜗(𝛿𝑡)) − 𝑓(𝑡, �̅�(𝑡), �̅�(𝛿𝑡))| 

+
𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡

0

|𝑓(𝑠, 𝜗(𝑠), 𝜗(𝛿𝑠)) − 𝑓(𝑠, �̅�(𝑠), �̅�(𝛿𝑠))|(𝑡 − 𝑠)𝜂−1𝑑𝑠] 

≤
2𝐿𝑓((1 − 𝜂))

𝔹(𝜂)
∥ 𝜗 − �̅� ∥ +

2𝐿𝑓𝑇𝜂

𝔹(𝜂)𝛤(𝜂)
∥ 𝜗 − �̅� ∥ 
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≤
2𝐿𝑓(𝛤(𝜂) + 𝑇 𝜂)

𝔹(𝜂)𝛤(𝜂)
∥ 𝜗 − �̅� ∥. 

 This shows that 𝐾 is a contraction. Therefore 𝐾 has a unique fixed point, which is the solution to the proposed 

problem(1). 

Theorem 3.  If the assumptions (A1), (A2) holds and 0 <
2𝐿𝑓

𝔹(𝜂)
< 1, then the mentioned problem (1) has at least 

one solution.  

Proof. Let 𝑉 = {𝜗 ∈ 𝑋: ∥ 𝜗 ∥≤ 𝑏}. Since f is continuous, so F is continuous. Let 𝜗, 𝜗̅ be arbitrary elements of 𝑉, 

now we have  

∥ 𝐹𝜗 − 𝐹�̅� ∥= 𝑚𝑎𝑥
𝑡∈ℐ

|𝐹𝜗(𝑡) − 𝐹�̅�(𝑡)| 

= |[𝜗0 +
(1 − 𝜂)

𝔹(𝜂)
(𝑓(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡) − 𝑓0 )] − [𝜗0 +

(1 − 𝜂)

𝔹(𝜂)
(𝑓(𝑡, �̅�(𝑡), �̅�(𝛿𝑡) − 𝑓0)]| 

≤
2𝐿𝑓

𝔹(𝜂)
∥ 𝜗 − �̅� ∥. 

 This implies that 𝐹  is a condensing operator. Now for the compactness and continuity of 𝐺, consider for any 𝜗 ∈ 𝑉, 

we may get  

∥ 𝐺𝜗 ∥= 𝑚𝑎𝑥
𝑡∈ℐ

|𝐺𝜗(𝑡)| 

= 𝑚𝑎𝑥
𝑡∈ℐ

|
𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡

0

𝑓(𝑠, 𝜗(𝑠),𝜗(𝛿𝑠))(𝑡 − 𝑠)𝜂−1𝑑𝑠| 

≤
𝑚 + (𝑙 + 𝑛)𝑏

𝔹(𝜂)𝛤(𝜂)
𝑇 𝜂 . 

 Thus 𝐺 is bounded. For the propose of continuity, assume that 𝑡1, 𝑡2 ∈ ℐ with a 𝑡1 < 𝑡2, we get  

|𝐺𝜗(𝑡2) − 𝐺𝜗(𝑡1)| = |
𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡2

0

𝑓(𝑠, 𝜗(𝑠), 𝜗(𝛿𝑠))(𝑡 − 𝑠)𝜂−1𝑑𝑠 

−
𝜂

𝔹(𝜂)𝛤(𝜂)
∫

𝑡1

0

𝑓(𝑠, 𝜗(𝑠),𝜗(𝛿𝑠))(𝑡 − 𝑠)𝜂−1 𝑑𝑠| 

≤
𝑚 + (𝑙 + 𝑛)𝑏

𝔹(𝜂)𝛤(𝜂)
(𝑡2

𝜂
− 𝑡1

𝜂
). 

Implies that |𝐺𝜗(𝑡2) − 𝐺𝜗(𝑡1)| → 0 as 𝑡2 → 𝑡1 , so 𝐺 is continuous. Hence by Theorem (1) our propose 

problem(1) has not less then one solution.  
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4 Stability Analysis 

 

This segment, of the work is concern to Ulam type stability analysis. We provide some definitions and notions, 

which are helpful for the stability analysis of the proposed problem.  

Definition 3. The solution  𝜗  of the mentioned problem (1) is UH stable. If we can choose a positive constant 𝐾𝑓 

such that for each 𝜀 > 0 and for each solution 𝜗 ∈ 𝑋 of the inequality 

|𝐴𝐵𝐶 𝐷0
𝜂

𝜗(𝑡) − 𝑓(𝑡,𝜗(𝑡),𝜗(𝛿𝑡))| ≤ 𝜀, 𝑡 ∈ ℐ, (8) 

 we have a unique solution ϑ∗ ∈ X of the consider problem (1), such that  

∥ 𝜗 − 𝜗∗ ∥≤ 𝐾𝑓𝜀. 

And is GUH stable, if one can find  

𝜙: (0, ∞) → (0, ∞), 𝜙(0) = 0, 

and for each solution ϑ of the inequality (8), we can find a unique solution ϑ∗ such that  

∥ ϑ − ϑ∗ ∥≤ Kfϕ(ε). 

Definition 4. The obtained solution of consider problem (1), i.e 𝜗 ∈ 𝑋 is UHR stable under 𝜓 ∈ 𝑋, for a positive 

constant 𝐾𝑓, such that the following result holds  

|𝐴𝐵𝐶 𝐷0
𝜂𝜗(𝑡) − 𝑓(𝑡,𝜗(𝑡),𝜗(𝛿𝑡))| ≤ 𝜓(𝑡)𝜀,    ∀  𝑡 ∈ [0, 𝑇],     (9) 

for ϑ∗ ∈ X be the unique solutio of the consider (1), such that  

∥ 𝜗 − 𝜗∗ ∥≤ 𝐾𝑓𝜓(𝑡)𝜀. 

And will be GUHR stable, if  

∥ 𝜗 − 𝜗∗ ∥≤ 𝐾𝑓𝜓(𝑡). 

Remark 1.  𝜗 ∈ 𝑋 be the solution for the inequality (8), iff if there exist a function depending on ϑ is 𝛽 ∈

𝐶[0, 𝑇] and for each 𝑡 ∈ ℐ    

• |𝛽(𝑡)| ≤ 𝜀;  

•  𝐴𝐵𝐶𝐷0
𝜂

𝜗(𝑡) = 𝑓(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡)) + 𝛽(𝑡).  

Remark 2.  Let 𝜗 ∈ 𝑋 will be the solution of the inequality (9), iff if we have a function depending on 𝜗 is 𝛽 ∈

𝒞[0, 𝑇] and ∀𝑡 ∈ ℐ   

• |𝛽(𝑡)| ≤ 𝜀𝜓(𝑡);  

•  𝐴𝐵𝐶𝐷0
𝜂

𝜗(𝑡) = 𝑓(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡)) + 𝛽(𝑡).  

Lemma 3.  In-view of above Remarks, the solution of corresponding problem  

          

 
0

0

, , , ,

0 1, 0 1, 0

ABC

t f t t t t tD

      

   

  


    

  (10) 
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satisfies the following  

|𝜗(𝑡) − 𝐇(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡))| ≤ 𝐾𝜂,𝑇𝜀, ∀𝑡 ∈ [0, 𝑇],            (11) 

 with  

𝐇(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡) = 𝜗0 +
(1 − 𝜂)

𝔹(𝜂)
(𝑓(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡) − 𝑓0 ) +

𝜂

𝔹(𝜂)Γ(𝜂)
 

∫
𝑡

0

𝑓(𝑠, 𝜗(𝑠), 𝜗(𝛿𝑠))(𝑡 − 𝑠)𝜂−1𝑑𝑠 

and  

𝐾𝜂,𝑇 =
Γ(𝜂) + 𝑇𝜂

𝑀(𝜂)Γ(𝜂)
. 

Proof. With the help of Lemma 2, (10) becomes  

𝜗(𝑡) = 𝜗0 +
(1 − 𝜂)

𝔹(𝜂)
(𝑓(𝑡, 𝜗(𝑡),𝜗(𝛿𝑡) − 𝑓0) +

𝜂

𝔹(𝜂)Γ(𝜂)
∫

𝑡

0

𝑓(𝑠, 𝜗(𝑠),𝜗(𝛿𝑠))(𝑡 − 𝑠)𝜂−1 𝑑𝑠 

 +
(1−𝜂)

𝔹(𝜂)
(𝛽(𝑡) − 𝛽0) +

𝜂

𝔹(𝜂)Γ(𝜂)
∫

𝑡

0
𝛽(𝑠)(𝑡 − 𝑠)𝜂−1 𝑑𝑠 

 which implies that  

|𝜗(𝑡) − 𝑯(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡))| ≤ 𝐾𝜂,𝑇𝜀. 

Theorem 4.  Under the assumption (A1), the desired solution of concerned problem (1) is UH and GUH stable, if 

1 ≠ Kη,T.  

Proof. In-view of Lemma 3, if ϑ and ϑ∗ are any solution and unique solution respectively for consider problem (1), 

such that  

|𝜗(𝑡) − 𝜗∗(𝑡)| = |𝜗(𝑡) − 𝐇(𝑡, 𝜗∗(𝑡), 𝜗∗(𝛿𝑡))| 

= |𝜗(𝑡) − 𝐇(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡)) + 𝐇(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡)) + 𝐇(𝑡, 𝜗∗(𝑡), 𝜗∗(𝛿𝑡))| 

≤ |𝜗(𝑡) − 𝐇(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡))| + |𝐇(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡)) + 𝐇(𝑡, 𝜗∗ (𝑡),𝜗∗ (𝛿𝑡))| 

≤ 𝐾𝜂,𝑇𝜀 + 2𝐿𝑓𝐾𝜂,𝑇 ∥ 𝜗 − 𝜗∗ ∥ 

 which further yields that  

∥ 𝜗 − 𝜗∗ ∥≤
𝐾𝜂,𝑇

1 − 2𝐿𝑓𝐾𝜂,𝑇
𝜀. 

Expressing by 𝐾𝑓 =
𝐾𝜂,𝑇

1−2𝐿𝑓𝐾𝜂,𝑇
, then the propose problem(1) is UH stable. Also, if 𝜙(𝜀) = 𝜀, then the concerned 

solution is GUH stable.  

Lemma 4. The following inequality holds for consider problem (10):  
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|𝜗(𝑡) − 𝐇(𝑡, 𝜗(𝑡), 𝜗(𝛿𝑡))| ≤ 𝐾𝜂 ,𝑇𝜀Ψ(𝑡), forall  𝑡 ∈ ℐ, 

Proof. we omit the proof, just similar to that of Lemma 3 by using Remark 2. 

Theorem 5. The solution of our propose model (1) is UHR and GUHR stable, if 𝐾𝜂,𝑇 ≠ 1, assumption (A1) hold 

along with Lemma 4.  

Proof. Just like Theorem 4, we can derive the required results. 

5 Stability Analysis 

 In this section, we steepen some examples for the illustration of our main work.  

Example 1 Consider the following initial value problem of “pantograph" type FODEs under ABC derivative  

 
 

   
21

2
3

sin sin
2

, 0,1 , 0 0,
25 50

ABC

t

t
t

t
t t

t
D

 

 




   




  (12) 

Clearly 𝑇 = 1 and 𝑓(𝑡, 𝜗(𝑡), 𝜗(
1

2
𝑡)) =

𝑡2

25
+

𝑠𝑖𝑛|𝜗(𝑡)|+𝑠𝑖𝑛|𝜗(
𝑡

2
)|

50+𝑡3
 is continuous function ∀ 𝑡 ∈ [0, 1]. Further let 

𝜗, 𝜗̅ ∈ 𝒞[ℐ, 𝑅], then we gets  

|𝑓(𝑡, 𝜗(𝑡),𝜗(
1

2
𝑡)) − 𝑓(𝑡, �̅�(𝑡), �̅�(

1

2
𝑡))| = |[

𝑡2

25
+

sin|𝜗(𝑡)| + sin|𝜗(
𝑡
2)|

50 + 𝑡3
] 

−[
𝑡2

25
+

sin|�̅�(𝑡)| + sin|�̅�(
𝑡
2)|

50 + 𝑡3
]| ≤

1

50
[|𝜗(𝑡) − �̅�(𝑡)| + |𝜗(

1

2
𝑡) − �̅�(

1

2
𝑡)]. 

 Hence from above, one has 𝐿𝑓 =
1

50
, and 𝜂 =

1

2
. Further,  

|𝑓(𝑡, 𝜗(𝑡),𝜗(
1

2
𝑡))| = |

𝑡2

25
+

sin|𝜗(𝑡)| + sin|𝜗(
𝑡
2

)|

50 + 𝑡3
| ≤

1

25
+

1

50
|𝜗(𝑡)| +

1

50
|𝜗(

1

2
𝑡)|. 

 Here, 𝑙 =
1

25
, 𝑚 =

1

50
, 𝑛 =

1

50
 and 𝑇 = 1. 

Now  

𝑇 𝜂 + 2𝐿𝑓(𝛤(𝜂)

𝛤(𝜂)𝔹(𝜂)
= 0.0469. 

Thus, Theorem (2) is satisfied. Hence, the consider example (12) has a unique solution. Further, 
2𝐿𝑓

𝔹(𝜂)
= 0.03. 

Therefore, Theorem (3) holds. Thus, (12) has at least one solution. Furthermore, proceed to verify stability results, 

we see that 𝐾𝜂,𝑇 = 1.1731 ≠ 1. Hence the solution of mentioned problem (12) is UH stable and consequently 

GUH stable. Also in the same way one can analyzed the UHR and GUHR stabilities analysis for (12).  
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Example 2 Let us consider the Pantograph type problem of ABC FODEs as  

 
 

   

2
323

7
2

3 sin
sin 3

, 0,1 , 0 0,
10 35 35

tABC t

t

t
t

e tt e
t t

t
D




 

  
 

  
    




 (13) 

 𝑓(𝑡, 𝜗(𝑡), 𝜗(
1

3
𝑡)) =

𝑡+𝑒2𝑡

10
+

𝑒3𝑡sin|𝜗(𝑡)|

35+𝑡2 +
3𝑡2 sin|𝜗(

𝑡

3
)|

35
 is continuous function for all 𝑡 ∈ [0, 1]. Further let 

𝜗, 𝜗̅ ∈ 𝒞[ℐ, 𝑅], then consider that  

|𝑓(𝑡, 𝜗(𝑡),𝜗(
1

3
𝑡)) − 𝑓(𝑡, �̅�(𝑡), �̅�(

1

3
𝑡))| = |{

𝑡 + 𝑒2𝑡

10
+

𝑒3𝑡sin|𝜗(𝑡)|

35 + 𝑡2
+

3𝑡2sin|𝜗(
𝑡
3)|

35
} 

 −{
𝑡+𝑒2𝑡

10
+

𝑒3𝑡 sin|𝜗(𝑡)|

35+𝑡2 +
3𝑡2 sin|𝜗(

𝑡

3
)|

35
}| ≤

1

35
{|𝜗(𝑡) − �̅�(𝑡)| + |𝜗(

1

3
𝑡) − �̅�(

1

3
𝑡)|}. 

 Thus from above, one has 𝐿𝑓 =
1

35
 and 𝜂 =

3

7
. And also, we have  

|𝑓(𝑡, 𝜗(𝑡), 𝜗(
1

3
𝑡))| = |

𝑡 + 𝑒2𝑡

10
+

𝑒3𝑡sin|𝜗(𝑡)|

35 + 𝑡2 +
3𝑡2sin|𝜗(

𝑡
3

)|

35
| ≤

1

10
+

1

35
|𝜗(𝑡)| +

1

35
|𝜗(

1

3
𝑡|. 

Where 𝑙 =
1

10
, 𝑚 =

1

35
, 𝑛 =

1

35
 and 𝑇 = 1. Further,  

2𝐿𝑓 (Γ(𝜂) + 𝑇 𝜂

𝔹(𝜂)Γ(𝜂)
=

22(Γ(
3
7

) + 1)

490Γ(
3
7

)
< 1. 

Hence, the deserted conditions of Theorem 2 are satisfied. Which granted the uniqueness of solution for concerned 

problem (13). Further  

2𝐿𝑓

𝔹(𝜂)
=

11

245
< 1. 

Thus, also the condition mandatory for Theorem 3 holds. Therefore, (13) has at least one solution. Furthermore, 

we computed that 𝐾𝜂,𝑇 ≠ 1, which elaborates that concerned problem (13) is both generalized and Hyers -Ulam 

stable. In same way it is easy to prove the conditions for UHR and GUHR stability. 

6. Concluding Remarks 

In this paper we have developed the constraints for the existence and stability of the solution of the problems 

containing the Atangana-baleanu fractional differential operator in the sense of Caputo. Apart from this, we have 

used the tools of fixed point theory such as Krasnoselskii and Banach theorems to derive the conditions for the 

problem studied in this paper. Furthermore, to analyze the stability of the problems we have provided the Ulam and 
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generalized Ulam stability. For the verification of the results we also provided examples and calculated the 

conditions under which the problems the unique and stable solution of the problems exists. 

Competing interest: The authors declare that they have no competing interest regarding this work. 
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