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A B S T R A C T 

Electrically conducted viscoelastic fluids have recently caught the 

attention of scientists and engineers due to their extensive applications 

in various sectors of research and engineering. It has great importance 

in cancer therapy (hyperthermia), magnetic resonance imaging (MRI), 

medication administration, and magnetic refrigeration (MR). The core 

objective of the present manuscript is to find the exact solution of the 

fractional convective flow of Walters’-B fluid. The effects of thermal 

radiations, magnetic field, electro-osmosis, and diffusion thermo have 

been considered in the present phenomenon. With the help of relative 

constitutive equations, the governing equations of the present 

phenomenon have been modeled in terms of second-order partial 

differential equations. To obtain the closed-form solution for velocity, 

temperature, and concentration equation, the Laplace transform 

technique has been implemented. To check the influences of various 

inserted parameters on fluid, graphs have been plotted. It is  very 

important to mention that electro-osmotic and Walters’-B fluid  

parameters decline the profile of velocity.  
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1 Introduction  

Right now, electro-assimilation accomplished the focal consideration of numerous analysts and researchers 

in view regarding its importance in microscale and nano implements having some routine and day -to-day 

applications in systematic science, the machine-driven procedure also in medication. The phenomena of electro -

osmosis allude to the motion of charged ions found in fluid in a permeable material because of a pragmatic electric 

field. This idea of creating motion by taking the help of the outer electric field starts two or three several years prior 

at the point when Reuss [1], inspected this marvel cautiously, utilizing clay. Recently, a lot of scientists and analysts 

contributing tentatively, mathematically, and hypothetically for a better understanding of the concept of electro -

osmosis. The principal component of electro-osmosis comprises the exodus of the ions from one place to another, 

in simple words, one can say that movement of anion towards the anode and also the movement of cation towards 

cathode is the main concept behind the process of electro-osmosis [2]. The hypothesis of hydration and model of 

Spiegler frictional [3,4] are the speculations castoff to depict the phenomena of electro -osmosis. Employments on 

large scale such as microfluidics appliances assume a significant function in numerous arenas, similar to substantial 

intermingling, clinical investigative, energy reaping, and synthetic investigation. The main fundamental problem of 

the appliances such as microfluidics is that in which way, we can move fluid which is generally increased through 

pressure-driven flows. The Electro-osmosis concept is comprehensively used as an option for siphoning the fluids 

in microchannel. The primary concern that varieties electro-osmosis an ideal technique for siphoning fluids in 

microchannel is that, speed of the motion of electro-osmotic velocities is liberated from the channel estimations. 
Electro-osmotic flows of other liquids which are other than Newtonian liquids to which we called non-Newtonian, 

for instance, blood, polymeric, protein plans, colloidal postponements, and the polymeric courses of action are 

critical. Freshly, various examinations of electro-osmotic flows of other liquids like non-Newtonian liquids have 

been accounted for with various kinds of native models, such as the models of power-law [5-8] and models of 

Maxwell [9,10]. As aware of the importance of electro-osmotic flow Ali et al. (11) studied the time-fractional 

analysis of the electro-osmotic flow of Walters’-B fluid and find the exact solutions for velocity, temperature, and 

concentration profile. The results obtained from this research work are of great importance. The obtained results of 

the current paper were justified by plotting the graphs. Knowing about the importance of the electro-osmotic flow 

of non-Newtonian fluids Saqib et al. [12] find the exact analysis of the non-linear electro-osmotic flow fractional 

Maxwell model using nanoparticles. They also find Nusselt number and skin friction in th eir research work. The 

authors also verified their mathematical work by plotting the graphs for different physical parameters. The results 

of the current work are very meaningful and fruitful.  

The history of fractional calculus is very rich, which started hundreds of years ago. But from the last thirty 

years, fractional calculus shows marvellous development and succeeded to achieve the worthy attention of numbers 

of researchers, scientists, and engineers. Many mathematicians of their time like Leibniz, Lap lace, Holmgren, Hardy, 

Fourier, Riesz, and Caputo contributed much to this field [13]. One can say that nowadays fractional is the need of 

the modern world. It shows its remarkable role in every field of life for example the physics related to bio, mechanics, 

physics, engineering, electrochemistry, bioengineering, mechatronics, and viscoelasticity [14-17]. Furthermore, 

from the study of fractional calculus, it is noted that it involves different operators which are developed by different 

mathematicians in which some of the popular and the most used fractional operators are listed which include Caputo -

Kober, Rieman-Liouville, Caputo-Hadamard, Caputo, and Caputo-Fabrizio [18-22]. At first, Riemann-Liouvil le 

was the most utilized definition yet there are a few issues in the uses of Riemann-Liouville, for example, the main  

issue was that the derivative of a constant isn’t zero. To get around this deficiency of the Riemann -Liouvil le 

derivative, Caputo inaugurate a revamp rendition of fractional derivatives, but th e kernel was found singular. 

Mustering out the remonstrance of Caputo derivative (CD), Caputo and Fabrizio innovate a newfangled delineation 

by the name of, Caputo-Fabrizio derivative (CFD) having non-singular kernel, which was omphalos on exponential 
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function [23]. Recently Ali et al. [24] examined modelling of transient MHD Brinkman nanofluid exploit the concept 

of CF fractional derivative. In the above-stated paper, the authors scrutinize the impact of nanoparticles of Cu on 

the free convection MHD trans ient movement of C6H9NaO7 Brinkman nanofluid lying on a vertical plate along 

with time-pendent concentration, temperature, and velocity. The exact solutions of the under-discussed paper 

obtained were of great importance and value. In another paper by Ali et al. [25], the authors work on the impacts of 

various-shaped nanoparticles on the accomplishment of Engine-Oil and Kerosene-Oil along with Brinkman as a 

base fluid. In the above-stated paper, the authors utilized the aspiration of Caputo-Fabrizio time derivative to 

transform the classical model into a generalized model. In continuation and knowing the importance of Caputo -

Fabrizio fractional time derivative in 2019 Ali et al. [26] published his paper heat transfer analysis of generalized  

Jeffery nanofluid in a rotating frame. A mathematical tool called the Laplace transform technique is utilized for 

obtaining the closed-form solutions for velocity and temperature field. The aspiration of Caputo-Fabrizio time-

fractional derivative is used by Saqib et al. [27] to find closed-form results for generalized Jeffrey fluid having free 

convection flow. Some other important and meaningful research work regarding Caputo-Fabrizio fractional 

derivative can be seen in [28, 29].  

Bearing in the mind of the above-addressed literature, the authors of the manuscript did not find any study 

related to the fractional electro-osmotic flow of Walter’s-B fluid with the effects of diffusion thermos. Therefore, to 

fill this gap in the literature the authors assumed time-dependent, the incompressible flow of viscoelastic Walter’s -

B fluid together with the influence of diffusion-thermos and thermal radiation. By making use of relative constitutive 

equations, the non-local mathematical model has been developed. The non-local mathematical model has been 

transformed to a fractional model by incorporating the time-fractional derivative of Caputo-Fabrizio with an 

exponential kernel. The exact solution has been found for velocity, temperature, and concentration equation by 

employing the integral transform technique i.e., Laplace transforms  technique. 

2 Mathematical Model of the Problem 

Assumed an incompressible flow of viscoelastic Walters’-B fluid together with the impact of diffusion  

thermo and electro-osmosis. The Plate is considered vertically upward in the direction of the x-axis. The fluid  

occupies the y, z plane. At the start, the fluid and the plate are in a static position, but after t > 0 the plate has been 

disturbed with the sudden jerk of which transmits the motion in the fluid along the x-axis. The configuration of the 

flow has been presented in Fig.1.  
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Figure.1: Configuration of the Flow 

The governing equations that describes the fluid motion are presented as  [11]: 
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In the governing equation (2), the term radiative heat flux is given as [30]: 
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For expanding 4T , the Taylor series about  aT T has been used and ignoring the higher order terms, we get: 

4 3 44 3a aT TT T  ,          (6) 

Differentiating equation (6) with respect to “y” and making use of equation (5), equation (2) takes the form:  
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For making the governing equations dimensionless, relative dimensionless variables are: 
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In the light of above stated dimensionless variables, the system of dimensionless governing equations is:  
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3. Caputo-Fabrizio Fractional Model 

The Caputo-Fabrizio fractional operator of order is defined as [18]: 

  
      *

*

0

exp
1 1

t

CF

t

t tN f t
C f t dt

t




 

  
  
   
 

 ,      0 1  .       (13) 

Here  N   is the normalization function such that    0 1 1N N  . In the light of fractional operator of 

Caputo-Fabrizio the classical governing equations adopt the following shape: 
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4. Solution of the Fractional Model 

For the exact solution of the fractional model, the Laplace transform technique has beeen used on 

equations (14-16), which takes the form: 
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and the Laplace transformed boundary conditions are: 
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Solving equations (17-19) and using transformed boundary conditions stated in equation (20), we arrived at: 
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In more simple form equations (21-23) are: 
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Now taking the inverse Laplace transform of the equations (24-26), we get: 

       

     

     

 
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10 6 5 7 11 6

, cos * , ,0, , , , , , , , , ,

, ,0, , , , , , , , , ,

, ,0, , , , , , , , , ,

, ,0, , ,

u y t wt y t y t y t

y t y t y t

y t y t y t

y t y

 

 

 

               

              

              

          
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   

     
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9

, , , , ,0, ,0,

, , , ,0, , , , ,0, ( 0, )

( , ) , ,0, ,0, , , , ,0,

, , , ,0, , ,0, ,0, , , , ,0,

ky

ky

t y t b a

y t b a y t b a R t e

R t e y t a a y t a a

y t a a y t b a y t b a







  

  

 





   

     
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   1 25 1, , , ,0,y t b a
  

(27) 

     3 1 2 1 2 1 1, , , 0, ,0, , , 0, ,0,y t Df y t a a Df y t b a     ,     (28) 
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   1 1, , , 0, ,0,y t y t b a  .         (29) 

Where 
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5. Solution of the Fractional Model 

This section of the present work elaborates the impact of inserted parameters on velocity, temperature, and 

concentration profile. The local governing equations have been transformed to the fractional Caputo-Fabrizio 

fractional model. The exact solution of the fractional model has been obtained via the technique of integral 

transform. The graphical results have been portrayed in response to inserted parameters.  

 

 

Fig.2. concentration profile in response to fractional parameter   

 

 
Fig.3. Concentration profile in response of Schmidt number Sc 
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Fig.4. The temperature profile in response to Dufour number Df 

 

 

Fig.5. The temperature profile in response to Prandtl number Pr 
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Fig.6. The temperature profile in response to Radiation parameter Rd 

 

 

Fig.7. The velocity profile in response of thermal Grashof number Gr 
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Fig.8. The velocity profile in response of mass Grashof number Gm 

 
Fig.9. The velocity profile in response to Prandtl number Pr 
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Fig.10. The velocity profile in response to walters’-B parameter   

 

 

 

Fig.11. The velocity profile in response of effk  
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Fig.12. The velocity profile in response to Electro-osmotic parameter Es 

 

 
Fig.13. The velocity profile in response of Dufour number Df 

The behaviour of the concentration profile in response to the fractional parameter  is shown in Fig.2. In 

non-local derivative, we have only one profile on 1   for the assumed fluid but in fractional order derivative, we 

can draw more than one profile on different values of , and due to this  prime advantage, the non-integer order 

derivative can provide different layers for investigation of the fluid. Experientialists can compare their results with 

one of the layers that best fits their problem. The behaviour of the concentration profile in response to the Schmidt  

number has been plotted in Fig.3. it can be noticed from the figure that for increasing magnitude of Sc the profile of 

concentration decreases and this is because Sc has inversely proportional to the mass diffusion rate. Fig.4. shows 

the effect of Dufour number Df on the temperature profile. A fall in the temperature profile can be seen from the 

figure and it is true because the increasing magnitude of Df increases the diffusion rate which consequently affects 

the temperature of the fluid and hence the temperature of the fluid decrease. Fig.5. illustrate the influence of Pr on 

the temperature profile. A fall can be noticed from the figure for rising values of Pr and this is due to the reason that 
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thermal forces are weakened for a larger value of Pr. Fig.6 illustrate the effect of radiation parameter Rd on the 

temperature profile. Temperature profile increases with the increasing values of Rd. Radiation parameter Rd has a 

direct relationship with the radiation emitting from the fluid and hence temperature profile enhances with increasing 

values of Rd.  

The behaviour of fluid motion in response to thermal and mass Grashof number Gr and Gm have been 

shown in Fig.7and Fig.8 respectively. Both the graphs depict increasing behaviour for Gr and Gm. The viscous 

forces in the fluid are reduced as Gr and Gm are increased, causing the fluid to move faster. To show the influence 

of Prandtl number Pr on the fluid motion, Fig.9 is drawn. Prandtl number represents the ratio between viscous forces 

and thermal forces. As the magnitude of Pr rises the viscous forces become dominant which leads to a decrease in 

the velocity profile. Fig.10 is portrayed to check the behaviour of the fluid motion in response to Walters’-B fluid  

parameter . We can see from the graph that as the value increases, the fluid's speed decreases, which is physically 

correct because greater values increase viscous forces, causing the fluid to slow down. Fig.11 is drawn to check the 

impact of effk  on fluid motion. Decreasing velocity profile is observed from these figures for larger values of M. 

As the magnitude of effk  increases, the resistive forces (Lorentz forces) become strengthen and retard the flow. 

Fig.12 depicts an increasing behaviour of fluid in response to greater values of Es . The electro-osmotic parameter 

Es   is related to the electric double layer (EDL) when the value Es  increases the electric double layer becomes 

thick which produces more resistive forces in the fluid which leads to slow down the fluid motion. Fig.13 has been 

plotted to check the behaviour of Df on fluid motion. From the sketch, a rise in the profile of velocity has been 

reported for larger values of Df because increasing values of Df boost up the rate of mass transfer, and due to this 

the fluid motion increase.  

6. Concluding Remarks 

Fractional electro-osmotic flow in the presence of Diffusion-thermo has been inspected on a vertical plate. The 

classical system of PDEs has been converted to a fractional-order model by the mean of the CF fractional operator. 

The exact solution has been developed through the Laplace transform technique. The key observations of the present 

analysis are listed below: 

 It has been found that fractional-order explains the memory effect of the considered fluid which is not possible by 

the classical mathematical model.  

 Velocity, temperature, and concentration are increasing functions of the fractional parameter  . 

 Increasing values of , , ,Rd Gr Gm  and Df boost up the temperature and velocity profile.  

Increasing values of , , Pr, ,effSc Es k and  declines the profile of temperature, concentration, and velocity 

profile. 

References 

[1] F. F. Reuss. (1809). Sur un nouvel effet de llectricit galvanique, Nouveaux de la Socit imperial des naturlistes de 

Moscou, 2, (1809) 327-337. 



            Iftikhar et al 

 
 

17 

 

[2] Asadi, A., Huat, B. B., Nahazanan, H., & Keykhah, H. A. (2013). Theory of electroosmosis in soil. International 

Journal of Electrochemical Science, 8(1), 1016-1025. 

[3] Gray, D. H. (1970). Electrochemical hardening of clay soils. Geotechnique, 20(1), 81-93. 

[4] D.H., Gray, and H.K. (1967), Mitchell, Journal of the Soil Mechanics and Foundations, ASCE 93 (1967) 209-236. 

[5] Das, S., & Chakraborty, S. (2006),. Analytical solutions for velocity, temperature and concentration distribution in 

electroosmotic microchannel flow of a non-Newtonian bio-fluid. Analytica Chimica Acta, 559(1) 15-24. 

[6] Zhao, C., Zholkovskij, E., Masliyah, J. H., & Yang, C. (2008), Analysis of electroosmotic flow of power-law fluids 

in a slit microchannel. Journal of colloid and interface science, 326(2), 503-510. 

[7] Tang, G. H., Li, X. F., He, Y. L., & Tao, W. Q. (2009). Electroosmotic flow of non -Newtonian fluid in 

microchannels. Journal of Non-Newtonian Fluid Mechanics, 157(1-2) 133-137. 

[8] Zhao, C., & Yang, C. (2012).  Joule heating induced heat transfer for the elect roosmotic flow of power-law fluids 

in a microcapillary. International Journal of Heat and Mass Transfer, 55(7-8), 2044-2051. 

[9] Liu, Q. S., Jian, Y. J., & Yang, L. G. (2011). Time periodic electroosmotic flow of the generalized Maxwell fluids 

between two micro-parallel plates. Journal of Non-Newtonian Fluid Mechanics, 166(9-10), 478-486. 

[10] Liu, Q., Jian, Y., & Yang, L. (2011). The alternating current electroosmotic flow of the Jeffreys fluids through a slit 

microchannel. Physics of Fluids, 23(10), 01-13.  

[11] Ali, F., Iftikhar, M., Khan, I., Sheikh, N. A., & Nisar, K. S. (2020). Time fractional analysis of electro -osmotic flow 

of Walters’ sB fluid with time-dependent temperature and concentration. Alexandria Engineering Journal, 59(1), 

25-38. 

[12] Murtaza, S., Iftekhar, M., Ali, F., & Khan, I. (2020). Exact Analysis of Non-Linear Electro-Osmotic Flow of 

Generalized Maxwell Nanofluid: Applications in Concrete Based Nano-Materials. IEEE Access, 8, 96738-96747. 

[13] Machado, J. T., Galhano, A. M., & Trujillo, J. J. (2013). Science metrics on fractional calculus development since 

1966. Fractional Calculus and Applied Analysis, 16(2), 479-500. 

[14] Oldham, K., & Spanier, J. (1974). The fractional calculus theory and applications of differentiation and integration 

to arbitrary order (Vol. 111). Elsevier. 

[15] Murtaza, S., Farhad Ali, A., Sheikh, N. A., Khan, I., & Nisar, K. S. (2020). Exact Analysis of Non -Linear 

Fractionalized Jeffrey Fluid. A Novel Approach of Atangana-Baleanu Fractional Model. CMC-COMPUT ERS 

MATERIALS & CONTINUA, 65(3), 2033-2047. 

[16] Murtaza, S., Ali, F., Sheikh, N. A., Khan, I., & Nisar, K. S. (2021). Analysis of Silver Nanoparticles in Engine Oil: 

Atangana-Baleanu Fractional Model. CMC-COMPUTERS MATERIALS & CONTINUA, 67(3), 2915-2932. 

[17] Ahmad, J., Ali, F., Murtaza, S., & Khan, I. (2021). Caputo Time Fractional Model Based on Generalized Fourier’s 

and Fick’s Laws for Jeffrey Nanofluid: Applications in Automobiles. Mathematical Problems in Engineering, 2021.  



            Iftikhar et al 

 
 

18 

 

[18] Caputo, M., & Fabrizio, (2015). M. A new definition of fractional derivative without singular kernel. Progr. Fract. 

Differ. Appl, 1(2), 1-13. 

[19] Zafar, A. A., & Fetecau, C. (2016). Flow over an infinite plate of a viscous fluid with a non -integer order derivative 

without singular kernel. Alexandria Engineering Journal, 55(3), 2789-2796. 

[20] Gambo, Y. Y., Jarad, F., Baleanu, D., & Abdeljawad, T. (2014).  On Caputo modification of the Hadamard fractional 

derivatives. Advances in Difference Equations, 2014(1),  10-21. 

[21] Ali, F., Saqib, M., Khan, I., & Sheikh, N. A. (2016). Application of Caputo-Fabrizio derivatives to MHD free 

convection flow of generalized Walters’-B fluid model. The European Physical Journal Plus, 131(10), 377. 

[22] Abdeljawad, T., & Baleanu, D. (2017).  On fractional derivatives with exponential kernel and their discrete versions . 

Reports on Mathematical Physics, 80(1), 11-27. 

[23] Sheikh, N. A., Ali, F., Khan, I., & Saqib, M. (2016). A modern approach of Caputo –Fabrizio time-fractional 

derivative to MHD free convection flow of generalized second-grade fluid in a porous medium. Neural Computing 

and Applications, 1-11. 

[24] Ali, F., Ali, F., Sheikh, N. A., Khan, I., & Nisar, K. S. (2020). Caputo–Fabrizio fractional derivatives modeling of 

transient MHD Brinkman nanoliquid: Applications in food technology. Chaos, Solitons & Fractals, 131, 109489. 

[25] Ali, F., Khan, I., Sheikh, N. A., Gohar, M., & Tlili, I. (2018). Effects of different shaped nanoparticles on the 

performance of engine-oil and kerosene-oil: a generalized Brinkman-type fluid model with non-singular kernel. 

Scientific reports, 8(1), 1-13. 

[26] Ali, F., Murtaza, S., Sheikh, N. A., & Khan, I. (2019). Heat transfer analysis of generalized Jeffery nanofluid in a 

rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models. Chaos, Solitons & Fractals, 129, 1-15. 

[27] Saqib, M., Ali, F., Khan, I., Sheikh, N. A., & Jan, S. A. A. (2018). Exact solutions for free convection flow of 

generalized Jeffrey fluid: a Caputo-Fabrizio fractional model. Alexandria engineering journal, 57(3), 1849-1858. 

[28] Ali, F., Saqib, M., Khan, I., & Sheikh, N. A. (2016). Application of Caputo-Fabrizio derivatives to MHD free 

convection flow of generalized Walters’-B fluid model. The European Physical Journal Plus, 131(10), 377. 

[29] Sheikh, N. A., Ali, F., Khan, I., & Saqib, M. (2018). A modern approach of Caputo –Fabrizio time-fractional 

derivative to MHD free convection flow of generalized second-grade fluid in a porous medium. Neural Computing 

and Applications, 30(6), 1865-1875. 

[30] Turkyilmazoglu, M., & Pop, I. (2013). Heat and mass transfer of unsteady natural convection flow of some 

nanofluids past a vertical infinite flat plate with radiation    effect. International Journal of Heat and Mass Transfer, 

59, 167-171. 


