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A B S T R A C T 

In this work, a new hybrid block method for solving second order initial value 

problems of ordinary differential equations is developed. The derivation is 

achieved via multistep collocation approach with the use of approximated power 

series as the basis function. The discrete schemes and its derivatives are derived 

by evaluating the basis function at the grid and non-grid points which are used to 

form the block. In other to examine the efficiency of the new developed block 

method, it is applied to second order initial value problems and the results 

generated revealed the accuracy of the method over the existing methods. 

In this work, a new hybrid-block method for the solution of second order 

ordinary differential equation is developed using power series as the basis 

function. The developed scheme was used to solve some problems and the result 

compare with existing results to ascertain the superiority of the new method. 

 

1. Introduction  

In order to numerically and more accurately solve ordinary differential equations arising from science, social sciences 

and engineering, which most times do not have analytical solutions, many scholars had proposed several different numerical 

methods such as linear multistep, Euler, Runge-Kutta, hybrid and block methods depending on the nature and type of the 

differential equation to be solved. This work is focused on the numerical solution of second order differential equations.  

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),   𝑦(𝑎) =  𝜇0,   𝑦(𝑎) =  𝜇1

𝑥 ∈ [𝑎, 𝑏]
}                                                                                                                                         (1) 

 

Though, these methods have their drawbacks but they can be circumvented or improve on as demonstrated in this work. 

2. Literature Review 

Many Scholars such ([6], [15,16], [9]) have suggested in the literature that a better alternative is to solve equation (1) directly 

without first reducing it to a system of first order ordinary differential equations.  
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In [3], Awoyemi adopted the method and proposed a two-step hybrid multistep method with continuous coefficients for the 

solution of (1) based on collocation at selected grid points and using off-grid points to upgrade the order of the method and 

to provide one additional interpolation point and implemented on the hybrid predictor-corrector mode. Later, [10], hybrid 

method of order four was used to generate starting values for Numerov method. Many scholars which include but not limited 

to ([5],[8],[17]) had studied hybrid methods.  

Fatunla [1,2] block method for special second order differential equations which was later developed by [4,7,11] was 

proposed. Parallel block methods in explicit and implicit for the solution of higher order differential equations where suitable 

interpolating polynomial was used to approximate the derivative function with a specified interval of integration was 

obtained. Many other scholars such as [12, 18], [13], [19] have adopted block methods where the derivative function was 

interpolated using Lagrange interpolation. These methods have largely focused on solving only special type ordinary 

differential equations with very few attempts in favour of (1). [14] and [20] have proposed five-step and four-step self-starting 

methods which adopt continuous linear multistep method to obtain finite difference methods applied respectively as a block 

for the direct solution of (1). Recently, ([21], [22], [23]) adopted hybrid-block method for the solution of second order 

ordinary differential equations and the results were found to be accurate and the scheme efficient compare to block methods. 

 

While all the methods have their qualities and are very robust, we propose in this research, a new hybrid-block method that 

harness the qualities of the existing methods for the direct solution of (1). 

 
3. Methodology 

In this section, a new Hybrid-Block scheme for the solution of second order ordinary differential equation is developed. The 

idea is to collocate the assumed function 𝑦(𝑥) at three points and interpolate at two points, which leaves us with five 

equations. Thus, evaluating at these points to derive the method. 

 

 

 

 

 

            𝑋𝑛+1              𝑋𝑛+3
2⁄
            𝑋𝑛+2                𝑋𝑛          𝑛               

    
 
Fig 1: collocation points 

 
3.1. Derivation of the Hybrid-Block Method. 

Using power series as basis function we have 

𝑦(𝑥) = ∑𝑎𝑖𝑥
𝑖 =

4

𝑖=0

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4                                                                                                                      (3.1) 

Then 

𝑦′(𝑥) = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥
2 + 4𝑎4𝑥

3                                                                                                                                                 (3.2) 
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 I I 
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𝑦′′(𝑥) = 2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥
2                                                                                                                                                            (3.3) 

 

Collocating equation (3.3) at 𝑥 = 𝑥𝑛,  𝑥 = 𝑥𝑛+1 and  𝑥 = 𝑥𝑛+2 we have 

 

𝑦′′(𝑥𝑛) = 2𝑎2 + 6𝑎3𝑥𝑛 + 12𝑎4𝑥𝑛
2                                                                                                                                                        (3.4) 

 
𝑦′′(𝑥𝑛+1) = 2𝑎2 + 6𝑎3𝑥𝑛+1 + 12𝑎4𝑥𝑛+1

2                                                                                                                                            (3.5) 
 

𝑦′′(𝑥𝑛+2) = 2𝑎2 + 6𝑎3𝑥𝑛+2 + 12𝑎4𝑥𝑛+2
2                                                                                                                                             (3.6) 

 

Also interpolating (3.1) at 𝑥 = 𝑥𝑛+1 and at  𝑥 = 𝑥𝑛+3
2⁄
 we have 

 

𝑦(𝑥𝑛+1) = 𝑎0 + 𝑎1𝑥𝑛+1 + 𝑎2𝑥𝑛+1
2 + 𝑎3𝑥𝑛+1

3 + 𝑎4𝑥𝑛+1
4                                                                                                                   (3.7) 

 

𝑦 (𝑥𝑛+3
2⁄
) = 𝑎0 + 𝑎1𝑥𝑛+3

2⁄
+ 𝑎2𝑥𝑛+3

2⁄
2 + 𝑎3𝑥𝑛+3

2⁄
3 + 𝑎4𝑥𝑛+3

2⁄
4                                                                                                  (3.8) 

 
The resulting matrix (of the form𝐴𝑥 = 𝑏) from the system of equations (3.4), (3.5), (3.6), (3.7) and (3.8) is 

 

[
 
 
 
 
 
0 0 2 6𝑥𝑛 12𝑥𝑛

2

0 0 2 6𝑥𝑛+1 12𝑥𝑛+1
2

0 0 2 6𝑥𝑛+2 12𝑥𝑛+2
2

1 𝑥𝑛+1 𝑥𝑛+1
2 𝑥𝑛+1

3 𝑥𝑛+1
4

1 𝑥𝑛+3
2⁄

𝑥
𝑛+3

2⁄
2 𝑥

𝑛+3
2⁄

3 𝑥
𝑛+3

2⁄
4

]
 
 
 
 
 

[
 
 
 
 
𝑎0

𝑎1

𝑎2

𝑎3

𝑎4]
 
 
 
 

=

[
 
 
 
 
 

𝑦′′(𝑥𝑛)

𝑦′′(𝑥𝑛+1)

𝑦′′(𝑥𝑛+2)

𝑦(𝑥𝑛+1)

𝑦 (𝑥𝑛+3
2⁄
)]
 
 
 
 
 

                                                                                                     (3.9) 

 
Solving (3.9) using MatLab to find  𝑎𝑖 , 𝑖 = 0,1,2,3,4  we have 

 

𝑎0 =
[(21ℎ4 + 77ℎ3𝑥𝑛 + 96ℎ2𝑥𝑛

2 + 48ℎ𝑥𝑛
3 + 8𝑥𝑛

4)𝑓𝑛]

192ℎ2
+

[(−3ℎ4 − 11ℎ3𝑥𝑛 + 16ℎ𝑥𝑛
3 + 8𝑥𝑛

4)𝑓𝑛+2]

192ℎ2

−
[(−63ℎ4 − 87ℎ3𝑥𝑛 + 32ℎ𝑥𝑛

3 + 8𝑥𝑛
4)𝑓𝑛+1]

96ℎ2
+

[(3ℎ + 2𝑥𝑛)𝑦𝑛+1]

ℎ
−

[2(ℎ + 𝑥𝑛)𝑦𝑛+3
2⁄
]

ℎ
 

=
(21ℎ4 + 77ℎ3𝑥𝑛 + 96ℎ2𝑥𝑛

2 + 48ℎ𝑥𝑛
3 + 8𝑥𝑛

4)𝑓𝑛 + (−3ℎ4 − 11ℎ3𝑥𝑛 + 16ℎ𝑥𝑛
3 + 8𝑥𝑛

4)𝑓𝑛+2

192ℎ2

−
[(−63ℎ4 − 87ℎ3𝑥𝑛 + 32ℎ𝑥𝑛

3 + 8𝑥𝑛
4)𝑓𝑛+1]

96ℎ2
+

(3ℎ + 2𝑥𝑛)𝑦𝑛+1 − [2(ℎ + 𝑥𝑛)𝑦𝑛+3
2⁄
]

ℎ
 

=

21ℎ4𝑓𝑛 + 77ℎ3𝑥𝑛𝑓𝑛 + 96ℎ2𝑥𝑛
2𝑓𝑛 + 48ℎ𝑥𝑛

3𝑓𝑛 + 8𝑥𝑛
4𝑓𝑛 − 3ℎ4𝑓𝑛+2 − 11ℎ3𝑥𝑛𝑓𝑛+2 + 16ℎ𝑥𝑛

3𝑓𝑛+2

+8𝑥𝑛
4𝑓𝑛+2

192ℎ2
 

+
63ℎ4𝑓𝑛+1 + 87ℎ3𝑥𝑛𝑓𝑛+1 − 32ℎ𝑥𝑛

3𝑓𝑛+1 − 8𝑥𝑛
4𝑓𝑛+1

96ℎ2
+

3ℎ𝑦𝑛+1 + 2𝑥𝑛𝑦𝑛+1 − 2ℎ𝑦𝑛+3
2⁄
− 2𝑥𝑛𝑦𝑛+3

2⁄

ℎ
 

 

𝑎0 =
ℎ4(21𝑓𝑛 − 3𝑓𝑛+2) + ℎ3𝑥𝑛(77𝑓𝑛 − 11𝑓𝑛+2) + 96ℎ2𝑥𝑛

2𝑓𝑛 + 𝑥𝑛
3(48ℎ𝑓𝑛 + 𝑓𝑛+216ℎ) + 𝑥𝑛

4(8𝑓𝑛 + 8𝑓𝑛+2)

192ℎ2

+
63ℎ4𝑓𝑛+1 + 87ℎ3𝑥𝑛𝑓𝑛+1 − 32ℎ𝑥𝑛

3𝑓𝑛+1 − 8𝑥𝑛
4𝑓𝑛+1

96ℎ2
+

ℎ (3𝑦𝑛+1 − 2𝑦𝑛+3
2⁄
) + 𝑥𝑛 (𝑦𝑛+1 − 2𝑦𝑛+3

2⁄
)

ℎ
 

𝑎1 =
2𝑦𝑛+3

2⁄

ℎ
−

2𝑦𝑛+1

ℎ
−

[(77ℎ3 + 192ℎ2𝑥𝑛 + 144ℎ𝑥𝑛
2 + 32𝑥𝑛

3)𝑓𝑛]

192ℎ2
−

[(−11ℎ3 + 48ℎ𝑥𝑛
2 + 32𝑥𝑛

3)𝑓𝑛+2]

192h2

+
[(−87ℎ3 + 96ℎ𝑥𝑛

2 + 32𝑥𝑛
3)𝑓𝑛+1]

96h2
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=
2(𝑦𝑛+3

2⁄
− 𝑦𝑛+1)

ℎ
−

77ℎ3𝑓𝑛 + 192ℎ2𝑥𝑛𝑓𝑛 + 144ℎ𝑥𝑛
2𝑓𝑛 + 32𝑥𝑛

3𝑓𝑛
192ℎ2

 

+
11ℎ3𝑓𝑛+2 − 48ℎ𝑥𝑛

2𝑓𝑛+2 − 32𝑥𝑛
3𝑓𝑛+2

192h2
−

87ℎ3𝑓𝑛+1 + 96ℎ𝑥𝑛
2𝑓𝑛+1 + 32𝑥𝑛

3𝑓𝑛+1

96h2
 

𝑎1 =
2(𝑦𝑛+3

2⁄
− 𝑦𝑛+1)

ℎ
−

ℎ3(77𝑓𝑛 − 11𝑓𝑛+2) + 192ℎ2𝑥𝑛𝑓𝑛 + ℎ𝑥𝑛
2(144𝑓𝑛 − 48𝑓𝑛+2) + 32𝑥𝑛

3(𝑓𝑛 − 𝑓𝑛+2)

192ℎ2

−
87ℎ3𝑓𝑛+1 + 96ℎ𝑥𝑛

2𝑓𝑛+1 + 32𝑥𝑛
3𝑓𝑛+1

96h2
 

𝑎2 =
(𝑥𝑛

2 + ℎ𝑥𝑛)𝑓𝑛+2

4h2
−

[(𝑥𝑛
2 + 2ℎ𝑥𝑛)𝑓𝑛+1]

2h2
+

(2ℎ2 + 3ℎ𝑥𝑛 + 𝑥𝑛
2𝑓𝑛)

4h2
 

 

=
𝑥𝑛

2𝑓𝑛+2 + ℎ𝑥𝑛𝑓𝑛+2 + 2ℎ2𝑓𝑛 + 3ℎ𝑥𝑛𝑓𝑛 + 𝑥𝑛
2𝑓𝑛

4h2
−

𝑥𝑛
2𝑓𝑛+1 − 2ℎ𝑥𝑛𝑓𝑛+1

2h2
 

 

𝑎2 =
𝑥𝑛

2(𝑓𝑛+2 + 𝑓𝑛) + ℎ𝑥𝑛(𝑓𝑛+2 + 𝑓𝑛) + 𝑓𝑛2ℎ2

4h2
−

𝑥𝑛
2𝑓𝑛+1 − 2ℎ𝑥𝑛𝑓𝑛+1

2h2
 

 

𝑎3 =
(ℎ + 𝑥𝑛)𝑓𝑛+1

3h2
−

[(3ℎ + 2𝑥𝑛)𝑓𝑛]

12h2
−

[(ℎ + 2𝑥𝑛)𝑓𝑛+2]

12h2
 

 

=
(ℎ + 𝑥𝑛)𝑓𝑛+1

3h2
−

3ℎ𝑓𝑛 − 2𝑥𝑛𝑓𝑛 − ℎ𝑓𝑛+2 + 2𝑥𝑛𝑓𝑛+2

12h2
 

 

𝑎3 =
(ℎ + 𝑥𝑛)𝑓𝑛+1

3h2
−

ℎ(3𝑓𝑛 − 𝑓𝑛+2) − 2𝑥𝑛(𝑓𝑛 + 𝑓𝑛+2)

12h2
 

 

𝑎4 =
𝑓𝑛

24h2
−

𝑓𝑛+1

12h2
+

𝑓𝑛+2

24h2
 

 

𝑎4 =
𝑓𝑛 + 𝑓𝑛+2

24h2
−

𝑓𝑛+1

12h2
 

 

Substituting  𝑎0, 𝑎1, 𝑎2, 𝑎3 𝑎𝑛𝑑 𝑎4  into (3.1) 

 

𝑦(𝑥) =
ℎ4(21𝑓𝑛 − 3𝑓𝑛+2) + ℎ3𝑥𝑛(77𝑓𝑛 − 11𝑓𝑛+2) + 96ℎ2𝑥𝑛

2𝑓𝑛 + 𝑥𝑛
3(48ℎ𝑓𝑛 + 16ℎ𝑓𝑛+2) + 𝑥𝑛

4(8𝑓𝑛 + 8𝑓𝑛+2)

192ℎ2

+
63ℎ4𝑓𝑛+1 + 87ℎ3𝑥𝑛𝑓𝑛+1 − 32ℎ𝑥𝑛

3𝑓𝑛+1 − 8𝑥𝑛
4𝑓𝑛+1

96ℎ2
 +

ℎ (3𝑦𝑛+1 − 2𝑦𝑛+3
2⁄
) + 𝑥𝑛 (𝑦𝑛+1 − 2𝑦𝑛+3

2⁄
)

ℎ

+
2𝑥 (𝑦𝑛+3

2⁄
− 𝑦𝑛+1)

ℎ

−
𝑥ℎ3(77𝑓𝑛 − 11𝑓𝑛+2) + 192ℎ2𝑥𝑛𝑥𝑓𝑛 + 𝑥ℎ𝑥𝑛

2(144𝑓𝑛 − 48𝑓𝑛+2) + 32𝑥𝑛
3𝑥(𝑓𝑛 − 𝑓𝑛+2)

192ℎ2

−
87ℎ3𝑥𝑓𝑛+1 + 96ℎ𝑥𝑛

2𝑥𝑓𝑛+1 + 32𝑥𝑛
3𝑥𝑓𝑛+1

96h2
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+
𝑥2𝑥𝑛

2(𝑓𝑛+2 + 𝑓𝑛) + 𝑥2ℎ𝑥𝑛(𝑓𝑛+2 + 𝑓𝑛) + 2𝑥2𝑓𝑛ℎ2

4h2
−

𝑥2𝑥𝑛
2𝑓𝑛+1 − 2ℎ𝑥𝑛𝑥2𝑓𝑛+1

2h2
+

𝑥3(ℎ + 𝑥𝑛)𝑓𝑛+1

3h2

−
𝑥3ℎ(3𝑓𝑛 − 𝑓𝑛+2) − 2𝑥𝑛𝑥3(𝑓𝑛 + 𝑓𝑛+2)

12h2
+

𝑥4𝑓𝑛 + 𝑥4𝑓𝑛+2

24h2

−
𝑥4𝑓𝑛+1

12h2
                                                                                                                                   (3.10) 

 
let 

𝑡 =
𝑥 − (𝑥𝑛+𝑘−1)

ℎ
 

Then, 

𝑡 =
𝑥 − (𝑥𝑛+2−1)

ℎ
, 𝑤ℎ𝑒𝑛 𝑘 = 2 

 

𝑡 =
𝑥 − (𝑥𝑛+1)

ℎ
=

𝑥 − (𝑥𝑛 + ℎ)

ℎ
, 𝑠𝑖𝑛𝑐𝑒 𝑥𝑛+1 = 𝑥𝑛 + ℎ 

 

𝑡ℎ =  𝑥 − 𝑥𝑛 − ℎ 

 

𝑥 = 𝑡ℎ + 𝑥𝑛 + ℎ 
 

𝑥 = 𝑥𝑛 , 𝑤ℎ𝑒𝑛 𝑡 = −1 

 

𝑥 = 𝑥𝑛+2 = 𝑥𝑛 + 2ℎ, 𝑤ℎ𝑒𝑛 𝑡 = 1 
 

From (3.10), the continuous scheme becomes 

 

𝑦(𝑥𝑛) = 𝑦𝑛 = 𝑦𝑛+1 − 2𝑡𝑦𝑛+1 + 2𝑡𝑦𝑛+3
2⁄
+

(𝑡ℎ2𝑓𝑛)

64
−

(23𝑡ℎ2𝑓𝑛+1)

96
−

(5𝑡ℎ2𝑓𝑛+2)

192
−

(𝑡3ℎ2𝑓𝑛)

12
+

(𝑡2ℎ2𝑓𝑛+1)

2
+

(𝑡4ℎ2𝑓𝑛)

24

−
(𝑡4ℎ2𝑓𝑛+1)

12
+

(𝑡3ℎ2𝑓𝑛+2)

12
 

+
(𝑡4ℎ2𝑓𝑛+2)

24
                                                                                                     (3.11) 

The derivative of (3.11) with respect to  𝑡  becomes 

𝑦′(𝑥𝑛) = 𝑦𝑛
′ =

ℎ(3𝑓𝑛 − 46𝑓𝑛+1 − 5𝑓𝑛+2 + 192𝑡𝑓𝑛+1 − 48𝑡2𝑓𝑛 + 32𝑡3𝑓𝑛 − 64𝑡3𝑓𝑛+1 + 48𝑡2𝑓𝑛+2 + 32𝑡3𝑓𝑛+2

192

−
2𝑦𝑛+1 − 2𝑦𝑛+3

2⁄

ℎ
                                                                                                          (3.12) 

The discrete scheme when  𝑡 = −1 

𝑦(𝑥𝑛) = 𝑦𝑛 = 3𝑦𝑛+1 − 2𝑦𝑛+3
2⁄
+

ℎ2

64
[7𝑓𝑛 + 42𝑓𝑛+1 − 𝑓𝑛+2]                  (3.13) 

Also when  𝑡 = 1 we have 

𝑦𝑛+2 = 2𝑦𝑛+3
2⁄
− 𝑦𝑛+1 −

ℎ2

192
[5𝑓𝑛 − 34𝑓𝑛+1 − 19𝑓𝑛+2]                          (3.14) 

Evaluating the derivative of the discrete scheme at 𝑥 = 𝑥𝑛 and  𝑥 = 𝑥𝑛+2 

At  𝑥 = 𝑥𝑛 

𝑦𝑛
′ =

−(2𝑦𝑛+1 − 2𝑦𝑛+3
2⁄
)

ℎ
−

(ℎ(77𝑓𝑛 + 174𝑓𝑛+1 − 11𝑓𝑛+2))

192
 

ℎ𝑦𝑛
′ = 2𝑦𝑛+3

2⁄
− 2𝑦𝑛+1 −

ℎ2

192
[77𝑓𝑛 + 174𝑓𝑛+1 − 11𝑓𝑛+2]                  (3.15) 

At  𝑥 = 𝑥𝑛+2 

𝑦𝑛+2
′ =

−(2𝑦𝑛+1 − 2𝑦𝑛+3
2⁄
)

ℎ
+

(ℎ(82𝑓𝑛+1 − 13𝑓𝑛 + 75𝑓𝑛+2))

192
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ℎ𝑦𝑛+2
′ = 2𝑦𝑛+3

2⁄
− 2𝑦𝑛+1 +

ℎ2

192
[−13𝑓𝑛 + 82𝑓𝑛+1 + 72𝑓𝑛+2]                (3.16) 

Expressing (3.13), (3.14)  and  (3.15)  in matrix form 

 

[
−3 2 0
1 −2 1
2 −2 0

] [

𝑦𝑛+1

𝑦𝑛+3
2⁄

𝑦𝑛+2

]

= [
0 0 −1
0 0 0
0 0 0

] [

𝑦𝑛−3
2⁄

𝑦𝑛−1

𝑦𝑛

] + ℎ [
0 0 0
0 0 0
0 0 −1

] [

𝑦
𝑛−3

2⁄
′

𝑦𝑛−1
′

𝑦𝑛
′

] + ℎ2

[
 
 
 0 0 7

64⁄

0 0 −5
192⁄

0 0 −77
192⁄ ]

 
 
 

[

𝑓𝑛−3
2⁄

𝑓𝑛−1

𝑓𝑛

]

+ ℎ2

[
 
 
 

42
64⁄ 0 −1

64⁄

34
192⁄ 0 19

192⁄

− 174
192⁄ 0 11

192⁄ ]
 
 
 

[

𝑓𝑛+1

𝑓𝑛+3
2⁄

𝑓𝑛+2

]                            (3.17) 

 

 

Let 𝐴 = [
−3 2 0
1 −2 1
2 −2 0

] , 𝐵 = [
0 0 −1
0 0 0
0 0 0

] , 𝐶 = [
0 0 0
0 0 0
0 0 −1

], 

 

𝐷 =

[
 
 
 0 0 7

64⁄

0 0 −5
192⁄

0 0 −77
192⁄ ]

 
 
 

, 𝐸 =

[
 
 
 

42
64⁄ 0 −1

64⁄

34
192⁄ 0 19

192⁄

−174
192⁄ 0 11

192⁄ ]
 
 
 

 

 

Then,  𝐴−1 = [

−1 0 −1

−1 0 −3
2⁄

−1 1 −2

] 

 

Multiply through (3.19) by the inverse of A we have 

[
1 0 0
0 1 0
0 0 1

] [

𝑦𝑛+1

𝑦𝑛+3
2⁄

𝑦𝑛+2

]

= [
0 0 1
0 0 1
0 0 1

] [

𝑦𝑛−3
2⁄

𝑦𝑛−1

𝑦𝑛

] + ℎ [

0 0 1

0 0 3
2⁄

0 0 2

] [

𝑦
𝑛−3

2⁄
′

𝑦𝑛−1
′

𝑦𝑛
′

] + ℎ2

[
 
 
 0 0 7

24⁄

0 0 63
128⁄

0 0 2
3⁄ ]

 
 
 

[

𝑓𝑛−3
2⁄

𝑓𝑛−1

𝑓𝑛

]

+ ℎ2

[
 
 
 

1
4⁄ 0 −1

24⁄

45
64⁄ 0 − 9

128⁄

4
3⁄ 0 0 ]

 
 
 

[

𝑓𝑛+1

𝑓𝑛+3
2⁄

𝑓𝑛+2

] 

 

This implies that 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 [

7

24
𝑓𝑛 +

1

4
𝑓𝑛+1 −

1

24
𝑓𝑛+2] 

 

𝑦𝑛+3
2⁄

= 𝑦𝑛 +
3

2
ℎ𝑦𝑛

′ + ℎ2 [
63

128
𝑓𝑛 +

45

64
𝑓𝑛+1 −

9

128
𝑓𝑛+2] 
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𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦𝑛
′ + ℎ2 [

2

3
𝑓𝑛 +

4

3
𝑓𝑛+2] 

This also implies 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′ +

ℎ2

24
[7𝑓𝑛 + 6𝑓𝑛+1 − 𝑓𝑛+2] 

 

𝑦𝑛+3
2⁄

= 𝑦𝑛 +
3

2
ℎ𝑦𝑛

′ +
9ℎ2

128
[7𝑓𝑛 + 10𝑓𝑛+1 − 𝑓𝑛+2] 

 

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦𝑛
′ +

ℎ2

3
[2𝑓𝑛 + 4𝑓𝑛+2] 

The Derivatives, 

𝑦𝑛+1
′ = 𝑦𝑛

′ +
ℎ

12
[5𝑓𝑛 + 8𝑓𝑛+1 − 𝑓𝑛+2] 

 

𝑦
𝑛+3

2⁄
′ = 𝑦𝑛

′ +
ℎ

8
[3𝑓𝑛 + 9𝑓𝑛+1] 

 

𝑦𝑛+2
′ = 𝑦𝑛

′ +
ℎ

3
[𝑓𝑛 + 4𝑓𝑛+1 + 𝑓𝑛+2] 

This is the derived Hybrid-Block Method 

 
4. Numerical Examples 

 

In order to ascertain the efficiency of this method, numerical experiment of some problems are performed and the 

results compared with that of the earlier literature. 

 

4.1. Example 1 

𝑦′′ − 𝑥(𝑦′)2 = 0, 𝑦(0), 𝑦′(0) =
1

2
, ℎ =

1

30
, 

Exact solution; 

𝑦(𝑥) = 1 +
1

2
𝐼𝑛 (

2 + 𝑥

2 − 𝑥
) 

 

Table 1: Comparison of the new method with Badmus and Yahaya. (2009) for solving Problem two. 

 
𝑥  

Theoretical Solution 

 

Computed Solution 

Error 

New method Badmus and Yahaya 

(2009), 𝒌 = 𝟓 

0.1 1.050041729278491400 1.050048113815469600 6.38 ∗ 10−06 5.89 ∗ 10−06 

0.2 1.100335347731075600 1.100354277282312500 1.89 ∗ 10−05 8.24 ∗ 10−05 

0.3 1.151140435936466800 1.151166322749548800 2.59 ∗ 10−05 3.46 ∗ 10−04 

0.4 1.202732554054082100 1.202772918188963500 4.04 ∗ 10−05 7.52 ∗ 10−04 

0.5 1.255412811882995200 1.255461682142221100 4.89 ∗ 10−05 1.38 ∗ 10−03 
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4.2. Example 2 

𝑦′′ − 100𝑦 = 0, 𝑦(0) = 1, 𝑦′(0) = −10, ℎ = 0.01 

 

 

Exact Solution: 𝑦(𝑥) = 𝑒−10𝑥 

 

Table 2: Comparison of the new method with Awari et al. (2004) for solving Problem one  

 

𝑥 Theoretical Solution Computed Solution Error in new 

method 

Error in Awari 

et al (2004) 𝑘 =
4 

0.0100000 0.904837418035959520 0.904837622396990730 2.04 ∗ 10−07 1.11 ∗ 10−05 

0.0200000 0.818730753077981820 0.818730938148340860 1.85 ∗ 10−07 3.14 ∗ 10−05 

0.0300000 0.740818220681717880 0.740818388435980580 1.68 ∗ 10−07 5.27 ∗ 10−05 

0.0400000 0.670320046035639330 0.670320198263434810 1.52 ∗ 10−07 7.45 ∗ 10−05 

0.0500000 0.606530659712633420 0.606530798037663300 1.38 ∗ 10−07 8.23 ∗ 10−05 

0.0600000 0.548811636094026390 0.548811761991317980 1.26 ∗ 10−07 9.71 ∗ 10−05 

0.0700000 0.496585303791409470 0.496585418602985000 1.15 ∗ 10−07 1.13 ∗ 10−04 

0.0800000 0.449328964117221560 0.449329069066350170 1.05 ∗ 10−07 1.31 ∗ 10−04 

0.0900000 0.406569659740599050 0.405999744850104430 5.70 ∗ 10−04 1.36 ∗ 10−04 

0.1000000 0.367879441171442330 0.367363762289662830 5.17 ∗ 10−04 1.47 ∗ 10−04 

 

5. Conclusion 

 

It is observed from Table 1 that the result obtained from the method is more efficient when compared to that of Badmus and 

Yahaya (2009). However, even though the error in the Block method proposed by Badmus and Yahaya (2009) seemed to 

have produced a good result at it points of evaluation, it should be noticed that the method had step number 𝑘 = 5 against 

our method with step number 𝑘 = 2. 

Also, in Table 2, it is also observed that the error in Awari et al (2004) also seemed to have a good result at its points of 

evaluation. It should also be noticed that the method in Awari et al (2004) had step number 𝑘 = 4 against our method with 

step number  𝑘 = 2. 

All computations were carried out using MATLAB 2008 and executed on Windows8 operating system.  
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