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A B S T R A C T 

The nonlinear nature of viscoelastic non-Newtonian fluids, introduce a unique 

challenge to physicists and mathematicians. By developing and utilizing 

viscoelastic models can play a special role in saving and treatments of every 

living species and to describe its particular characteristics. In the past three 

decades, viscoelastic fluid models are focused to improve its accuracy and 

reliability.  Some rate type viscoelastic fluids include Maxwell fluid which 

effects in relaxation time. Such effect of relaxation time cannot be predicted by 

differential-type fluids. The polymers of low molecular weight are usefully 

described by Maxwell model. However, a keen interest of the researchers is seen 

in studying rate type fluids due to the fact that they incorporate both the elastic 

nature and memory behaviour together. In this article, viscoelastic Maxwell fluid 

is considered in cylindrical tube together with heat transfer due to convection 

caused by the buoyancy force. This problem is modelled using the classical 

approach and then solved for exact solution using joint the Laplace and Hankel 

transforms. Effects of pertinent parameters on Maxwell fluid velocity have been 

shown graphically. Behaviour of temperature is studied for various values of 

Prandtl number.  

1. Introduction  
 

In everyday life non-Newtonian fluids are widely used like lava, gums and blood in different fields of industries such as 

food industries, biomedicine and chemical engineering and many other industrial processes which make necessary for 

us to study non-Newtonian fluid flow behaviour. Due to its complex behaviour, various models in the literature are 

suggested for non-Newtonian fluids such as rate type [1], differential type [2] and integral type. Maxwell model is one 

subclass of rate type fluids. The polymers of less molecular weight are described best by Maxwell fluid model due to its 

relaxation in time effects and these effects of time relaxation cannot be seen in differential type fluids. The flow behaviour 

of rate type fluids can be seen in [3–5]. These fluids have non-direct connection between shear pressure and the rate of 

strain. Maxwell fluid in cylindrical shaped domain has got attention for the scholars, specialists and mathematicians 

dealing with the fluid mechanics. Many researchers of the fluid mechanics are interested to study the behaviour of 

viscoelastic Maxwell fluid in cylindrical domain [6, 7]. 

The book of Chanderashker [8] is considered basic for obtaining closed form solutions in cylindrical coordinates. Makris 

and Constantinou [9] discovered that it is not possible for Maxwell fluid to get sufficient experimental data due to range 
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of its different frequencies. Friedrich [10] found that there is a relationship between governing equations involving 

fractional derivatives and molecular theories. Makris et al. [11] indicated that when classical Maxwell fluid is replaced 

by fractional Maxwell fluid best data regarding fluid are obtained. The constitutive equations of non-Newtonian and rate 

type fluids are studied by Rajagopal [12].  A lot of researchers contributed well to obtain a good research and to find 

exact solutions of the problems having shear stress boundary conditions. Water et al. [13] was the first to develop such 

kind of conditions Fetecau et al. [14] deal with viscoelastic fluid in cylindrical domain with unsteady shear stress and 

obtained its exact solutions. In another article Fetecau et al. [15] discussed the flow Burgers fluid due to oscillations 

inducted by cylinder. Vieru et al. [16] study Maxwell fluid motion due to oscillation of cylinder and obtained its starting 

solutions. The viscoelastic flow over sphere and the effect of inertia and flow behaviour due elasticity were studied by 

Zheng et al. [17]. A lot of researchers studied Maxwell fluid with heat transfer some of them are Zhao et al. [18] give 

their aptitude in heat transfer due to free convection boundary layer heat exchange of fractional Maxwell viscoelastic 

fluid over a vertical plate. Hernandez-Morales and Mitchell. [19] give basic idea that how to model fluid flow geomatery 

and mathematical form and study the heat and mass transfer in electroslag remelting process. Sheikholeslami et al. [20] 

deal about Lattice Boltzmann re-enactment of MHD free convection heat exchange of Al2O3– water nanofluid in a flat 

cylindrical shaped fenced in area with an internal triangular chamber. Zafar et al. [21] give their expertise in unsteady 

rotational flow of fractional Maxwell fluid in a cylinder subject to Shear stress on the boundary. 

This paper studies convective flow of Maxwell fluid in a vertical cylinder. Closed form solutions are obtained by using 

Laplace and Hankel transforms jointly for momentum and energy. Effects of pertinent parameters on the velocity of 

Maxwell fluid have been shown graphically and discussed. 

2. Mathematical Formulation and Solution of the Problem 

We have taken the energy transfer and its effect on a Maxwell fluid flow through a vertical infinite cylinder of radius

or . Radial coordinate r  is taken perpendicular. It is suggested that at time t 0,  both the cylinder and fluid are in 

steady state with ambient temperature .T  At time t = 0
 , the cylinder begins to oscillate with velocity 

( )exp( )oU H t i t  where oU  is the  constant velocity , ( )H t  is the Heaviside unit step function and   denotes 

the  oscillations frequency of the cylinder. At t = 0
, the cylinder temperature rose to wT  which is then taken constant 

shown in Fig.1.                                         

                            

Fig.1 Fluid flow geometry 

We consider that temperature and velocity and are the functions of radial coordinate and time such that the incompressibility 

constraint is satisfied identically. Under these assumptions, the governing equations can be modelled as [22]: 
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( , ) ( , ) 1 ( , )
1 1 ( ); (0, ), 0,    

        
           

        
T

u r t u r t u r t
g T T r r t

t t r r r t
     (1) 

2

2

( , ) 1 ( , ) 1 ( , )
0; (0, ), 0,

T r t T r t T r t
r r t

r r r t

  
    

                                  (2) 

With the following initial and boundary conditions: 

 ( ,0) 0, ( ,0) ; 0, ,u r T r T r r  
                                                      (3) 

,( ) ( ) ; ( , ) , 0.  i t

wu r t U H t e T r t T t                                                       (4) 

 Presenting the accompanying dimensionless factors 

2
*

2 2
, , , , ,

 
     




     

w

T T rtv r u
t r u

r r U T T v r
  

Equations (1) - (4) are reduced to (dropping out star notation) 

 
2

2

1
1 1 ; 0,1 , 0,  

       
         

       

u u u
Gr r t

t t r r r t
                                         (5) 

     
 

2

2

, , ,1 1
; 0,1 , 0,

Pr

     
    

   

r t r t r t
r t

t r r r
                                       (6) 

 ,0 0u r ,  ,0 0; [0,1],  r r                                                                  (7) 

     1, exp ; (1, ) 1, 0,   u t H t i t t t                                                   (8) 

where
 2

,
 

 T wg r T T

U v
Gr Pr ,




   




p

k

c
,  

g is the acceleration because of gravity and T
 is the coefficient of heat expansion. 

3. Calculation for Temperature 

In order to solve the dimensionless system of above equations, initially, we apply the Laplace transform to Eqs. (6) And to 

the corresponding boundary condition from Eq.
(8)

 To get the following transformed equations: 

   
2_ _

2

1 1
, , ,

Pr
 

  
  

  
q r q r q

r r r
                          (9) 

  
_ 1

1, , q
q

                                                                                   (10) 

where  
_

, r q  is the Laplace transform for the function  , r t . 
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Now by applying the finite Hankel transform of zero order to Eq. (9), and using (10), we obtain: 

 
 

2

_
1

Pr

1 1
, ,

 
  
  
   

n

n

H n
r

n

J r
r q

r q q
                                            (11) 

where      
1_ _

0

0

, ,  H n n nr q r r q J rr dr is the Hankel transform for the function  
_

, r q , and 
0 (.)J  is the   Bessel 

function of order Zero and first kind and , 0,1,.......nr n  are the positive roots of the Eq. (11). 

Inverse Laplace transform of Eq. (11), can be determined as: 

 
    2

1 1
, exp ,

Pr


 
   

 

n n n
H n

n n

J r J r r
r t t

r r
                                                             (12) 

Now apply the inverse Hankel transform to Eq. (12), we have: 

 
 

 

2
0

1 1

, 1 2 exp .
Pr






 
   

 


n n

n n n

J r r r
r t t

r J r
                                              (13) 

The Nusselt number is determined in order to study the transformation of heat from the surface of the cylinder to the fluid 

and its dimensionless form can be evaluated as: 

  2

11

,
2 exp

Pr

 



   
      

   
 n

nr

r t r
Nu t

r
.                                   (14) 

4. Calculation for velocity 

    Taking the Laplace transform of Eq. (6) and corresponding boundary condition from Eq. (9) take the form: 

   
   

   
2

2

, ,1
1 , 1 , ,  


    

 

u r q u r q
q qu r q q Gr r q

r r r
                                 (15) 

 
1

1, .





u q
q i

                                                  (16) 

By using Eqs. (11) and (16), and applying the Hankel transform to Eq. (15) we obtain; 

   

   
 

 

 

2

_
1

1 2 2

Pr

1 1 1 1
, .

1
1 1

 
 

 
   
      
          

    

n

n

H n n n
r

nn n

J r
u r q r J r Gr

r qr r q
q q i q q

q q

       (17)  

   Let we consider             
_

3( , ) , H n n nu r q F q F q

   

   
 

   1 1 22

1
,

1
1

 


  
 

   
 

n n n n n

n

F q r J r F q F q
r

q q i q
q

      (18) 
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   Where 

 
 

 

    
    

2

1 1

1 4 2

11 1
,

1

  

  

 
 

  

nn n

n

n n n

irJ r J r
F q

r q i r q ir
                            (19) 

 
    

     

2

1

2 2 4 2

1
,

1 1

 

  

 
 

   

n n n

n

n n

r J r r i
F q

q r r
                                           (20)

 
   

     
  

22 2

1

3 2 2

Pr1 1

1 1 1 Pr 1 1
.

1 Pr
 




 

    
       

                 
nn n

n

n
rr r

n n n
q q

J r q
F q Gr

r r q r q qq q
              (21) 

  Laplace inversion of the above equations yields 

         1 2 , n n nF t f t f t                                                                                                       (22)                                                                                     

  With 

 
     

  
   

  

2

1 1 1

1 22 4 2 4

cos( )1 1 cos( )
,

sin( )1 1 sin( )

      

     

    
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       

i t

n n n n

n

n nn n n n
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f t i
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 
    

  
 

2 2 2

1 3
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1 exp
1 ,

1

 
 

 

 
    

 

n n n
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n
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                                              (24)

 
 

 

2 2

2
1

3 22 2
2

2

12 42exp
1

sinh 1 ,
2 11 14
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


  

                                                           

n

n
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Using Eqn. (22)-(25) we obtain; 

 
 

 
   

  
 
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 
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 

n n

H n n

n n n

n n nn

n n

n n n
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2
2

2

2

1
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2 1
1

  


 

           
                               

n

n
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Now by taking inverse Hankel transform, Eq. (26) reduces to the following form: 
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   
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
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n
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n

n
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5. Graphical results and discussion 

 The impact of different fluid parameters on temperature ( , ) r t , fluid velocity  ,u r t   has been discussed 

graphically by using the computational tool Mathcad. The fluid flow geometry has been shown in figure 1. In figures 2 

Grashoff number effect has been shown on the Maxwell fluid parameter. By increasing the Grashoff number both the 

velocities increases due to the increase in the buoyancy term because Grashoff number represents the ratio between the 

buoyancy force and viscous force. In figure 3 the effect of Prandtl number has been noticed on the viscoelastic fluid. As 

Prandtl number is the ratio of viscous forces to the thermal forces. By increases Prandtl number the viscous forces becomes 

dominant as a result fluid velocity decreases. . In figure 4 the influence of Prandtl number is noticed. The curves of 

temperature are sketched versus r. It is found that an increase in Prandtl number decreases the fluid temperature due to 

increase in the viscous diffusion rate and a decrease in thermal diffusion rate. Variation of Nusselt number for various 

standards of Pr is studied in figure 5. As Nusselt number is the ratio between convective and conductive heat transfer. It is 

indicated that by increasing Pr, downfall occur in the Nusselt number  due to the variation  in viscosity rate so for less value 

of Pr, convection is dominant and for high values conduction become dominant. In figure 6 comparative studies has been 

made for viscous fluids and viscoelastic Maxwell fluid for both sine and cosine oscillation. In fig 7 limiting solution has been 

plotted, it is indicated that by putting  =0 will reduce our solution to solution obtained by Naheed et al. [23]. 

6. CONCLUSION 

    Some rate type viscoelastic fluids include Maxwell fluid which effects in relaxation time. Such effect of relaxation 

time cannot be predicted by differential-type fluids. The polymers of low molecular weight are usefully described by Maxwell 

model. In this article, viscoelastic Maxwell fluid is considered in cylindrical tube together with heat transfer due to convection 

caused by the buoyancy force. This problem is modelled using the classical approach and then solved for exact solution using 

joint the Laplace and Hankel transforms. Effects of pertinent parameters on Maxwell fluid velocity have been shown 

graphically. Behaviour of temperature is studied for various values of Prandtl number. The key points of the present study 

are listed as under: 

1. Velocity decrease with increase in Prandtl number due to increase in viscous diffusion rate.  

2. Velocity increases with increase in Grashof number due to increase in buoyancy force.  

3. Velocity decreases due to increase in Maxwell parameter    due to relaxation in time effects which causes increase in 

the viscoelasticity of the fluid. The phenomena are absorbed because less relaxation time has low elasticity and larger 

relaxation time indicates higher and lesser recovery ability of Maxwell fluid.   
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Fig.2 Graphs of velocity in cosine and sine oscillations for variation in Gr. when Pr 1 , 2.5t , 0.6    
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Fig.3 Graphs of velocity for cosine and sine oscillations for variation in Pr when 10Gr  

 

 

 



A scientific report on the flow of Maxwell fluid with heat transfer in vertical oscillating cylinder 

 

 18 

 

Fig.4 Graphs of temperature for different values of Pr when 

2.5t , .6   

 

Fig.5 Variation in Nusselt number for different values of 

Pr when 2.5t , .6   

 
Fig.6 Comparative graph of viscous fluid and Maxwell fluid for sine and cosine oscillation. 

 

Fig.7 Limiting solution for sine and cosine oscillation by putting  = 0. 
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