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A B S T R A C T 

This study presents the mathematical model of entropy generation on MHD 

peristaltic wave of Nanofluid. The governing equations have been developed by 

the assumption of low Reynold’s number and long wavelength approximation. 

The analytical solution has been obtained with the help of perturbation method. 

The expression of temperature profile, pressure distribution and friction forces 

are presented graphically for some significant parameters. Further, the results of 

correlation and regression between the entropy generation and some other 

parameters have been plotted. It is very important to find the sensitivity of each 

parameter on entropy generation. Findings of regression analysis show that 81% 

of the variability of entropy generation for magnetic parameter, 99% of the 

variability of entropy generation for Brownian motion parameter, 40% of the 

variability of entropy generation for Thermophoresis parameter and 100% of the 

variability of entropy generation for Brinkmann is accounted for by the variable 

Iv. Similarly, a decrease of 2.562 in entropy generation for the various values of 

the independent variable Magnetic parameter, an increase of 2.029 in entropy 

generation for the values of Brownian motion, an increase of 6.307 in entropy 

generation for Thermophoresis and 68.492 in entropy generation scores for 

Brinkmann on every one-unit increase in Iv.    

1. Introduction  
 

The use of heat transfer fluids is one of the technological applications of nanoparticles that hold enormous promise which 

containing suspensions of nanoparticles to confront cooling problems in the thermal systems. Due to the great demands placed 

upon the heat transfer fluids in terms of decreasing or increasing energy release to systems. A significance research work has 

been done by Choi and Eastman [1-2] that a mixture of nanoparticles and base fluid that such fluids were designated as 

“Nanofluid”. He defined a liquid of ultra-fine particle with dia less than 100nm.  In the field of thermal engineering and heat 

transfer nanofluid has always been an engrossing term. Peristalsis in the connection with nanofluid has various application 

such as in engineering, bio-sciences and industrial. Several theoretical and experimental attempts to this area have been 

contributed. Specially the works of Lathams and Shapiro et al. [3] play very important role in this direction. Similarly, because 
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of its multiple advantages, research findings on peristaltic flows have got wide application in industries, numerous attempts 

have been made to literature to explore this direction which can be viewed in the available reference [4-6].   

     Keeping in mind the above-aforementioned discussion, in any of these studies correlation and regression has not been 

investigated. Therefore, the aim of the present study is to investigate the correlation and regression of entropy generation of 

the MHD peristaltic flow of nanofluid with a porous medium. For this purpose, the study applies the situation of small 

Reynolds number and long wavelength and an analytical technique named as Homotopy Perturbation Method (HPM) is used 

to solve the simplified partial differential equations. Expression for temperature, concentration pressure and entropy 

generation have been obtained graphically. Based on entropy generation results, correlation and regression derived and 

explained the role of some pertinent parameters on entropy generation. Such kind of investigations can be much beneficial 

to find the sensitivity of each parameter on objective functions which are we considered as entropy generation in this model.   

 

2.  Mathematical Formulation 

 

We present, modeling of the Peristaltic motion viscous, electrically conducting and incompressible nanofluid properties 

through a two-dimensional non- uniform channel with sinusoidal wave propagating towards down its walls. As it is mentioned 

in the Fig. (1) that cartesian coordinate system is taken in such a way that 𝑥 axis is considered along with the center line in 

the direction of wave propagation and 𝑦  is transverse to it. The 𝐵0,  a uniform external magnetic field is imposing along the 

𝑦 axis and the induced magnetic field is assumed to be negligible. The geometry of the wall surface is defined as,  

  𝐻(�̃�, �̃�) = �̌�sin
2𝜋

𝜆
 (�̃� − 𝐶�̃�) + 𝑏(�̌�)       (1) 

where 

    𝑏(�̃�) =  𝑏0 +  Κ�̃� 
 

 
Figure 1. The geometry of the problem 

 
The governing equation of motion, continuity, thermal energy and nano-particle fraction for peristaltic nanofluid can be 

written as [6]. 

𝜕�̃�

𝜕�̃�
+

𝜕�̃�

𝜕�̃�
= 0,           (2) 

𝜌𝑓 (
𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
) = −

𝜕�̃�

𝜕�̃�
+

𝜕

𝜕�̃�
S�̃��̃� +

𝜕

𝜕�̃�
S�̃��̃� − 𝜎𝐵0�̃� −

𝜇

�̃�
�̃� + 𝑔 [

(1 − 𝐹)𝜌𝑓0
𝜁(𝑇 − 𝑇0)

−(𝜌𝑝 − 𝜌𝑓0
)(𝐹 − 𝐹0)

], (3) 

𝜌𝑓 (
𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
+ �̃�

𝜕�̃�

𝜕�̃�
) = −

𝜕�̃�

𝜕�̃�
+

𝜕

𝜕�̃�
S�̃��̃� +

𝜕

𝜕�̃�
S�̃��̃� − 𝜎𝐵0�̃� −

𝜇

𝑘
�̃� + 𝑔 [

(1 − 𝐹)𝜌𝑓0
𝜁(𝑇 − 𝑇0)

−(𝜌𝑝 − 𝜌𝑓0
)(𝐹 − 𝐹0)

],         (4) 

(𝜌𝑐)𝑓 (
𝜕𝑇

𝜕�̃�
+ �̃�

𝜕𝑇
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+ �̃�

𝜕𝑇

𝜕�̃�
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+
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𝜕�̃�2) + (𝜌𝑐)𝑝D𝐵 (
𝜕𝑇

𝜕�̃�

𝜕𝐹

𝜕�̃�
+

𝜕𝐹

𝜕�̃�

𝜕𝑇

𝜕�̃�
) +

D𝑇

𝑇0
((

𝜕𝑇

𝜕�̃�
)

2

+ (
𝜕𝑇

𝜕�̃�
)

2

) 

−
𝜕𝑞𝑟

𝜕�̃�
+ 𝑄0,                                                                                                                                        (5)                                                                                                                     
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(
𝜕𝐹

𝜕�̃�
+ �̃�

𝜕𝐹

𝜕�̃�
+ �̃�

𝜕𝐹

𝜕�̃�
) = D𝐵 (

𝜕2𝐹

𝜕�̃�2 +
𝜕2𝐹

𝜕�̃�2) +
D𝑇

𝑇0
(

𝜕2𝑇

𝜕�̃�2 +
𝜕2𝑇

𝜕�̃�2) − 𝑘1(𝐹 − 𝐹0),                    (6) 

                     

     Now let us consider the assumptions of long wavelength number and low Reynolds approximations in the sense of 

creeping flow. By using dimensionless quantities in the Eq. (2) to Eq. (6), we get the resulting equations in a simplified form 

as 

𝜕2𝑢

𝜕𝑦2 + 𝑊𝑒
𝜕

𝜕𝑦
(

𝜕𝑢

𝜕𝑦
)

2
−

1

𝑘
𝑢 − 𝑀2𝑢 − 𝐺𝑟𝐹𝛷 + 𝐺𝑟𝑇𝜃 −

𝜕𝑝

𝜕𝑥
= 0,                                 (7) 

(
1+Rn

Pr
)

𝜕2𝜃

𝜕𝑦2 + 𝑁𝑡 (
𝜕𝜃

𝜕𝑦
)

2
+ 𝛽 + 𝑁𝑏

𝜕𝜃

𝜕𝑦

𝜕Φ

𝜕𝑦
= 0,                                     (8) 

𝜕2𝛷

𝜕𝑦2  − 𝛾𝛷 +
𝑁𝑡

𝑁𝑏
(

𝜕2𝜃

𝜕𝑦2) = 0.                                      (9) 

Subject to the respective boundary conditions  

, 𝛷(0) = 0,
𝜕𝑢(0)

𝜕𝑦
= 0, 𝜃(0) = 0,                                     (10) 

𝛷(ℎ) = 1, 𝜃(ℎ) = 1, 𝑢(ℎ) = 0                                      (11) 

In the presence of magnetic field, the entropy generation can be derived from energy and entropy balance for the case of heat 

and mass transfer as [8] 

Sgen =
𝒦𝑛𝑓

𝑇0
2 (∇T)2 +

𝜇𝑛𝑓

�̃�𝑇0
[
2 (

𝜕�̃�

𝜕�̃�
)

2
+ 2 (

𝜕�̃�

𝜕�̃�
)

2

+ (
𝜕�̃�

𝜕�̃�
+

𝜕�̃�

𝜕�̃�
)

2 ] +
𝜎𝐵0

2

𝑇0
(

𝜕�̃�

𝜕�̃�
)

2
+

𝑅D𝐵

𝐹0
(∇𝐹)2 +

𝑅D𝐵

𝑇0
(∇𝐹 ∙ ∇𝑇)                   (12)                                                                                                                                

The dimensionless form of entropy generation number can be expressed as follows 

𝑁𝑠 =
Sgen

Sg
= (

𝒦𝑛𝑓

𝒦𝑓
) ((

𝜕𝜃

𝜕𝑦
)

2
) + (1 + 𝑀2)𝐵𝑟

1

Ω
(

𝜇𝑛𝑓

𝜇𝑓
) (

𝜕𝑢

𝜕𝑦
)

2
+ Γ (

Λ

Ω
)

2
(

𝜕𝛷

𝜕𝑦
)

2
+  𝜁 (

𝜕𝜃

𝜕𝑦
) (

𝜕Φ

𝜕𝑦
),             (13) 

  

Where Ω,  𝐵𝑟 , Λ , Γ, 𝜁 are the dimensionless temperature difference, Brinkman number, concentration difference, diffusive 

coefficient and constant parameter are represented as 

 Ω =
(𝑇1−𝑇0)

𝑇0
, 𝐵𝑟 =

𝑐̃2𝜇𝑓

�̃�𝒦𝑓(𝑇1−𝑇0)
, 𝜁 =

𝑅𝐷𝐵𝑇0

𝒦𝑓
(

𝐹1−𝐹0

𝑇1−𝑇0
) , Γ =

𝑅D𝐵𝐹0

𝒦𝑓
, Λ =

𝐹1−𝐹0

𝐹0
 .                                             (14) 

For nanofluid, the viscosity model and thermal conductivity can be defined as [19] 

𝜇𝑛𝑓 =
𝜇𝑓

(1−�̅�)
2.5,                        𝒦nf =

κp+2κf+2ϕ̅(κp−κf)

κp+2κf−ϕ̅(κp−κf)
κf                                               (15) 

here, 𝜿𝒇 and 𝜿𝒑, are the thermal conductivities of the nanofluid and nano-particle respectively. 
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3. Solution of the problem 

Considering Eq. (7) to Eq. (9) and with the help of HPM [7] it can be written as:  

ℋ(𝑤, �̃�) = (1 − �́�)(𝐿1(𝑤) − 𝐿1(�̅�0)) + �́� (𝐿1(𝑤) +  𝑊𝑒
𝜕

𝜕𝑦
(

𝜕𝑤

𝜕𝑦
)

2
+ 𝐺𝑟𝑇Θ − 𝐺𝑟𝐹ϑ −

𝜕𝑝

𝜕𝑥
),   (16) 

ℋ(Θ, �̃�) = (1 − �́�)(𝐿2(Θ) − 𝐿2(Θ̅0)) + �́� (𝐿2(Θ) +
Pr

1+RnPr
(𝑁𝑏

𝜕ϑ

𝜕𝑦

𝜕Θ

𝜕𝑦
+ 𝑁𝑡 (

𝜕ϑ

𝜕𝑦
)

2
) +

Pr𝛽

1+RnPr
),   (17) 

ℋ(ϑ, �̃�) = (1 − �́�)(𝐿2(ϑ) − 𝐿2(ϑ̅0)) + �́� (𝐿2(ϑ) +  
𝑁𝑡

𝑁𝑏
(

𝜕2Θ

𝜕𝑦2) − 𝛾ϑ),.                  (18) 

And the initial guess and linear operators for the Eq. (16) to Eq. (18) are defined as  

�̅�0 =
cosh N2𝑦−cosh N2ℎ 

cosh N2ℎ
,                        (19) 

ϑ̅0 = Θ̅0 =
𝑦

ℎ
.                                                                                                                                      (20) 

𝐿1 =
𝜕2

𝜕𝑦2 − 𝑀2 −
1

𝑘
,             (21) 

𝐿2 =
𝜕2

𝜕𝑦2,                          (22)  

Defining the following expansion  

ϑ(𝑥, 𝑦) = ϑ0(𝑥, 𝑦) + �́�ϑ1(𝑥, 𝑦) + �́�2ϑ2(𝑥, 𝑦) + ⋯,                                                                     (23) 

Θ(𝑥, 𝑦) = Ψ0(𝑥, 𝑦) + �́�Ψ1(𝑥, 𝑦) + �́�2Ψ2(𝑥, 𝑦) + ⋯,                                                         (24) 

𝑤(𝑥, 𝑦) = 𝑤0(𝑥, 𝑦) + �́�𝑤1(𝑥, 𝑦) + �́�2𝑤2(𝑥, 𝑦) + ⋯,                                                                          (25) 

Using the expensing series defined in term of (ϑ(𝑥, 𝑦),( Θ(𝑥, 𝑦) and (𝑤(𝑥, 𝑦)) as mentioned in Eq. (23) to Eq. (25) into the 

Eq. (16) to Eq. (18) . We get a system of linear differential equations with their relevant boundary conditions. By comparing 

the powers of �́�. Apply the scheme of HPM, we obtained the solution as �́�  → 1, we get the required solution of temperature 

distribution, velocity profile, and concentration profile obtained. 

4. Results and Discussion 

In this section the obtained results have been discussed. It depicts from Fig. (2) that for higher values of 𝑁𝑏  and 𝑁𝑡 

Temperature profile increases. Because the Brownian motion creates micro- mixing which rises thermal conductivity. It is 

observed from Fig. (3) that pressure rise shows completely opposite behavior for the various values of thermal Grashof 

parameter 𝐺𝑟𝑇 and Basic density Grashof number 𝐺𝑟𝐹 . It can conclude from the Fig. (4a) that pressure rise reducing for the 

larger values of magnetic parameter 𝑀. Which shows the fact that pressure can be control by using the suitable magnetic 

field. Also, it is concluded from this figure that flow can pass easily without imposing higher pressure inside the channel. 

After analysis the Fig. (4b) of to Fig. (5), it is observed that there is completely opposite behavior of friction force for the 
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different values of the same physical parameters as compared to pressure rise distribution.  

      From Table 1, the R-square Entropy generation for various values of magnetic parameter M is 0.809, meaning that 

approximately 81% of the variability of Entropy generation is explained by the parameter M in the model while adjusted R-

square 0.799 indicates that about 80% of the variability of Entropy generation is accounted for Magnetic parameter M by the 

Model. Entropy generation values for Brownian motion parameter 𝑁𝑏  is 0.998 which indicates that approximately 99% of 

the variability of Entropy is due to the parameter 𝑁𝑏 in the model while, adjusted R-square 0.999 indicates that about 99% of 

the variability of Entropy is accounted for 𝑁𝑏  by the Model. In the R-square the values of Entropy generation for the 

parameter Thermophoresis parameter 𝑁𝑡  is 0.403 which reveals that approximately 40% of the variability of Entropy is 

explained by the parameter 𝑁𝑡  in the model while adjusted R-square 0.370 indicates that about 37% of the variability of 

Entropy is accounted for 𝑁𝑡 by the Model and the Entropy values for different values of 𝐵𝑟  is 1.00 and that 100% of the 

variability of Entropy is accounted for the parameter 𝐵𝑟   in the model while adjusted ,R-square 1.00 indicates that about 

100% of the variability of Entropy is accounted for 𝐵𝑟   by the Model. 

       It can be concluded from the Table 2 that a decrease of -2.562 in Entropy for independent variable M, an increase of 

2.029 in Entropy for 𝑁𝑏. Similarly, an increase of 6.307 in Entropy for the parameter 𝑁𝑡  and increase of 68.492 in Entropy 

for 𝐵𝑟  scores for every one-unit increase in Iv, assuming all other variables in the model as constant. Table 3 is plotted to 

analyze the correlation of entropy generation for some sensitive parameters. It is concluded from these results that a 

significant perfect positive correlation exists between Brinkman number 𝐵𝑟  and its entropy. Strong positive relationship has 

been observed from the correlation results between the entropy and the parameters 𝑁𝑡 and 𝑁𝑏. There is a significant very 

strong negative correlation exist between M and its entropy.  

5. Conclusions 

The Following outcomes demonstrated through this study are as: 

 Temperature profile increases for higher values of 𝑁𝑏 and 𝑁𝑡. 

 Pressure distribution and Friction force has opposite behavior for larger values of the magnetic parameter, Brownian 

motion parameter and the thermophoresis parameter. 

 The variability of entropy generation is 81% for the values of M while 99% variability for the parameter 𝑁𝑏. 

 The variability of entropy generation is 40% for the values of  𝑁𝑡  while 100% variability for the parameter 𝐵𝑟 . 

Table 1: Model Summary 

 

Model R R Square Adjusted R 

Square 

Std. Error of the 

Estimate 

1 

2 

3 

4 

 

.900a 

.999a 

.635a 

1.000a 

.809 

.998 

.403 

1.000 

.799 

.998 

.370 

1.000 

.7558884 

.0550427 

4.6675041 

.19437519 
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Table 2. Coefficients 

 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 

 

 

 

2 

 

 

 

 

3 

 

 

 

4 

(Constant) 
74.223 .351   211.381 .000 

M -2.562 .293 -.900 -8.739 .000 

(Constant) 
29.097 .026   1137.975 .000 

M 2.049 .021 .999 95.977 .000 

(Constant) 
65.565 2.168   30.239 .000 

M 6.307 1.810 .635 3.485 .003 

(Constant) 1.359 .090   15.056 .000 

M 68.492 .075 1.000 908.676 .000 

 

 

Table 3: Correlation table between entropy generation and parameters. 

 

Entropy and Parameters                      𝑁𝑆  Vs Br       𝑁𝑆  Vs 𝑁𝑡            𝑁𝑆  Vs 𝑁𝑏       

                                         

                 𝑁𝑆  Vs M 

Values range 0.1 to 2.0     0.1 to 2.0       0.1 to 2.0 0.1 to 2.0 

N 20        20             20                 20 

Pearson Correlation 

Sig. (2-tailed) 

1.000** 

 

.000 

     .635** 

 

    .003 

         .999** 

 

         .000 

                  .900** 

 

                 .000 

     

Remarks Perfect Relation Strong Positive Relation Strong Positive     

Relation 

          Very Strong   

Negative Relations 

 
 

(a) (b) 

 

Figure 2: Temperature profile for various values of 𝑁𝑏 and 𝑁𝑡  when 𝑃𝑟 = 1, 𝛽 = 0.8, 𝑊𝑒 = 0.2, 𝑀 = 0.1, 𝐺𝑟𝑇 =

0.5, 𝐺𝑟𝐹 = 0.6, 𝛾 = 0.1, 𝑘 = 1. 
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(a) (b) 

 

Figure 3: Pressure rise distribution for various values of Grt and 𝐺𝑟𝑓 when  𝑁𝑡 = 1, 𝛽 = 0.8, 𝑊𝑒 = 0.2, 𝑀 = 0.1, =

0.5,   𝑁𝑏 = 0.6, 𝛾 = 0.1, 𝑘 = 1. 

 

(a) (b) 

 

Figure 4:  Pressure distribution for various values of 𝑀 and Friction force profile for various values of 𝐺𝑟𝑓 when 𝑁𝑡 =

1, 𝛽 = 0.8, 𝑊𝑒 = 0.2, 𝑀 = 0.1, 𝐺𝑟𝑇 = 0.5, 𝛾 = 0.1, 𝑘 = 1. 

 

(a)  (b) 

Figure 5: Friction force for various values of 𝐺𝑟𝑡 and 𝑀 when 𝑁𝑡 = 1, 𝛽 = 0.8, 𝑊𝑒 = 0.2, 𝑁𝑏 = 0.1, 𝐺𝑟𝐹 = 0.6, 𝛾 =

0.1, 𝑘 = 1. 
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